rbanfield's picture
Upload 2 files
b926327
raw
history blame
1.24 kB
from io import BytesIO
import base64
from PIL import Image
import torch
from transformers import CLIPProcessor, CLIPTextModel, CLIPVisionModelWithProjection
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
self.text_model = CLIPTextModel.from_pretrained("rbanfield/clip-vit-large-patch14")
self.image_model = CLIPVisionModelWithProjection.from_pretrained("rbanfield/clip-vit-large-patch14")
self.processor = CLIPProcessor.from_pretrained("rbanfield/clip-vit-large-patch14")
def __call__(self, data):
text_input = data.pop("text", None)
image_input = data.pop("image", None)
if text_input:
processor = self.processor(text=text_input, return_tensors="pt", padding=True)
with torch.no_grad():
return self.text_model(**processor).pooler_output.tolist()
elif image_input:
image = Image.open(BytesIO(base64.b64decode(image_input)))
processor = self.processor(images=image, return_tensors="pt")
with torch.no_grad():
return self.image_model(**processor).image_embeds.tolist()
else:
return None