vision
nicklorch's picture
added debugging
a4e73a2
raw
history blame
1.81 kB
from io import BytesIO
import base64
import traceback
from PIL import Image
import torch
from transformers import CLIPProcessor, CLIPTextModel, CLIPVisionModelWithProjection
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
self.text_model = CLIPTextModel.from_pretrained("rbanfield/clip-vit-large-patch14").to(device)
self.image_model = CLIPVisionModelWithProjection.from_pretrained("rbanfield/clip-vit-large-patch14").to(device)
self.processor = CLIPProcessor.from_pretrained("rbanfield/clip-vit-large-patch14")
def __call__(self, data):
try:
text_input = None
if isinstance(data, dict):
print('data is a dict: ', data)
inputs = data.pop("inputs", None)
text_input = inputs.get('text',None)
image_data = BytesIO(base64.b64decode(inputs['image'])) if 'image' in inputs else None
else:
# assuming its an image sent via binary
image_data = BytesIO(data)
if text_input:
processor = self.processor(text=text_input, return_tensors="pt", padding=True).to(device)
with torch.no_grad():
return {'embeddings':self.text_model(**processor).pooler_output.tolist()[0]}
elif image_data:
image = Image.open(image_data)
processor = self.processor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
return {'embeddings':self.image_model(**processor).image_embeds.tolist()[0]}
else:
return {'embeddings':None}
except Exception:
return {'Error':traceback.format_exc()}