File size: 1,435 Bytes
dc1351d
 
 
 
 
 
 
 
 
 
 
9c170f0
dc1351d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from io import BytesIO
import base64

from PIL import Image
import torch
from transformers import CLIPProcessor, CLIPModel

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class EndpointHandler():
    def __init__(self, path=""):
        self.model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14").to(device)
        self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")

    def __call__(self, data):

        text_input = None
        if isinstance(data, dict):
            inputs = data.pop("inputs", None)
            text_input = inputs.get('text',None)
            image_data = BytesIO(base64.b64decode(inputs['image'])) if 'image' in inputs else None
        else:
            # assuming its an image sent via binary
            image_data = BytesIO(data)
        
        if text_input:
            processor = self.processor(text=text_input, return_tensors="pt", padding=True).to(device)
            with torch.no_grad():
                return {"embeddings": self.model.get_text_features(**processor).to("cpu").tolist()}
        elif image_data:
            image = Image.open(image_data)
            processor = self.processor(images=image, return_tensors="pt").to(device)
            with torch.no_grad():
                return {"embeddings": self.model.get_image_features(**processor).to("cpu").tolist()}
        else:
            return {"embeddings": None}