|
|
|
|
|
|
|
import unittest |
|
import torch |
|
from torch.autograd import gradcheck |
|
|
|
from tensormask.layers.swap_align2nat import SwapAlign2Nat |
|
|
|
|
|
class SwapAlign2NatTest(unittest.TestCase): |
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") |
|
def test_swap_align2nat_gradcheck_cuda(self): |
|
dtype = torch.float64 |
|
device = torch.device("cuda") |
|
m = SwapAlign2Nat(2).to(dtype=dtype, device=device) |
|
x = torch.rand(2, 4, 10, 10, dtype=dtype, device=device, requires_grad=True) |
|
|
|
self.assertTrue(gradcheck(m, x), "gradcheck failed for SwapAlign2Nat CUDA") |
|
|
|
def _swap_align2nat(self, tensor, lambda_val): |
|
""" |
|
The basic setup for testing Swap_Align |
|
""" |
|
op = SwapAlign2Nat(lambda_val, pad_val=0.0) |
|
input = torch.from_numpy(tensor[None, :, :, :].astype("float32")) |
|
output = op.forward(input.cuda()).cpu().numpy() |
|
return output[0] |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|