|
|
|
import torch |
|
from torch.nn import functional as F |
|
|
|
from detectron2.layers import cat, shapes_to_tensor |
|
from detectron2.structures import BitMasks, Boxes |
|
|
|
|
|
""" |
|
Shape shorthand in this module: |
|
|
|
N: minibatch dimension size, i.e. the number of RoIs for instance segmenation or the |
|
number of images for semantic segmenation. |
|
R: number of ROIs, combined over all images, in the minibatch |
|
P: number of points |
|
""" |
|
|
|
|
|
def point_sample(input, point_coords, **kwargs): |
|
""" |
|
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors. |
|
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside |
|
[0, 1] x [0, 1] square. |
|
|
|
Args: |
|
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid. |
|
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains |
|
[0, 1] x [0, 1] normalized point coordinates. |
|
|
|
Returns: |
|
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains |
|
features for points in `point_coords`. The features are obtained via bilinear |
|
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`. |
|
""" |
|
add_dim = False |
|
if point_coords.dim() == 3: |
|
add_dim = True |
|
point_coords = point_coords.unsqueeze(2) |
|
output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs) |
|
if add_dim: |
|
output = output.squeeze(3) |
|
return output |
|
|
|
|
|
def generate_regular_grid_point_coords(R, side_size, device): |
|
""" |
|
Generate regular square grid of points in [0, 1] x [0, 1] coordinate space. |
|
|
|
Args: |
|
R (int): The number of grids to sample, one for each region. |
|
side_size (int): The side size of the regular grid. |
|
device (torch.device): Desired device of returned tensor. |
|
|
|
Returns: |
|
(Tensor): A tensor of shape (R, side_size^2, 2) that contains coordinates |
|
for the regular grids. |
|
""" |
|
aff = torch.tensor([[[0.5, 0, 0.5], [0, 0.5, 0.5]]], device=device) |
|
r = F.affine_grid(aff, torch.Size((1, 1, side_size, side_size)), align_corners=False) |
|
return r.view(1, -1, 2).expand(R, -1, -1) |
|
|
|
|
|
def get_uncertain_point_coords_with_randomness( |
|
coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio |
|
): |
|
""" |
|
Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties |
|
are calculated for each point using 'uncertainty_func' function that takes point's logit |
|
prediction as input. |
|
See PointRend paper for details. |
|
|
|
Args: |
|
coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for |
|
class-specific or class-agnostic prediction. |
|
uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that |
|
contains logit predictions for P points and returns their uncertainties as a Tensor of |
|
shape (N, 1, P). |
|
num_points (int): The number of points P to sample. |
|
oversample_ratio (int): Oversampling parameter. |
|
importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. |
|
|
|
Returns: |
|
point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P |
|
sampled points. |
|
""" |
|
assert oversample_ratio >= 1 |
|
assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0 |
|
num_boxes = coarse_logits.shape[0] |
|
num_sampled = int(num_points * oversample_ratio) |
|
point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device) |
|
point_logits = point_sample(coarse_logits, point_coords, align_corners=False) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
point_uncertainties = uncertainty_func(point_logits) |
|
num_uncertain_points = int(importance_sample_ratio * num_points) |
|
num_random_points = num_points - num_uncertain_points |
|
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] |
|
shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device) |
|
idx += shift[:, None] |
|
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( |
|
num_boxes, num_uncertain_points, 2 |
|
) |
|
if num_random_points > 0: |
|
point_coords = cat( |
|
[ |
|
point_coords, |
|
torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device), |
|
], |
|
dim=1, |
|
) |
|
return point_coords |
|
|
|
|
|
def get_uncertain_point_coords_on_grid(uncertainty_map, num_points): |
|
""" |
|
Find `num_points` most uncertain points from `uncertainty_map` grid. |
|
|
|
Args: |
|
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty |
|
values for a set of points on a regular H x W grid. |
|
num_points (int): The number of points P to select. |
|
|
|
Returns: |
|
point_indices (Tensor): A tensor of shape (N, P) that contains indices from |
|
[0, H x W) of the most uncertain points. |
|
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized |
|
coordinates of the most uncertain points from the H x W grid. |
|
""" |
|
R, _, H, W = uncertainty_map.shape |
|
h_step = 1.0 / float(H) |
|
w_step = 1.0 / float(W) |
|
|
|
num_points = min(H * W, num_points) |
|
point_indices = torch.topk(uncertainty_map.view(R, H * W), k=num_points, dim=1)[1] |
|
point_coords = torch.zeros(R, num_points, 2, dtype=torch.float, device=uncertainty_map.device) |
|
point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step |
|
point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step |
|
return point_indices, point_coords |
|
|
|
|
|
def point_sample_fine_grained_features(features_list, feature_scales, boxes, point_coords): |
|
""" |
|
Get features from feature maps in `features_list` that correspond to specific point coordinates |
|
inside each bounding box from `boxes`. |
|
|
|
Args: |
|
features_list (list[Tensor]): A list of feature map tensors to get features from. |
|
feature_scales (list[float]): A list of scales for tensors in `features_list`. |
|
boxes (list[Boxes]): A list of I Boxes objects that contain R_1 + ... + R_I = R boxes all |
|
together. |
|
point_coords (Tensor): A tensor of shape (R, P, 2) that contains |
|
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points. |
|
|
|
Returns: |
|
point_features (Tensor): A tensor of shape (R, C, P) that contains features sampled |
|
from all features maps in feature_list for P sampled points for all R boxes in `boxes`. |
|
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains image-level |
|
coordinates of P points. |
|
""" |
|
cat_boxes = Boxes.cat(boxes) |
|
num_boxes = [b.tensor.size(0) for b in boxes] |
|
|
|
point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords) |
|
split_point_coords_wrt_image = torch.split(point_coords_wrt_image, num_boxes) |
|
|
|
point_features = [] |
|
for idx_img, point_coords_wrt_image_per_image in enumerate(split_point_coords_wrt_image): |
|
point_features_per_image = [] |
|
for idx_feature, feature_map in enumerate(features_list): |
|
h, w = feature_map.shape[-2:] |
|
scale = shapes_to_tensor([w, h]) / feature_scales[idx_feature] |
|
point_coords_scaled = point_coords_wrt_image_per_image / scale.to(feature_map.device) |
|
point_features_per_image.append( |
|
point_sample( |
|
feature_map[idx_img].unsqueeze(0), |
|
point_coords_scaled.unsqueeze(0), |
|
align_corners=False, |
|
) |
|
.squeeze(0) |
|
.transpose(1, 0) |
|
) |
|
point_features.append(cat(point_features_per_image, dim=1)) |
|
|
|
return cat(point_features, dim=0), point_coords_wrt_image |
|
|
|
|
|
def get_point_coords_wrt_image(boxes_coords, point_coords): |
|
""" |
|
Convert box-normalized [0, 1] x [0, 1] point cooordinates to image-level coordinates. |
|
|
|
Args: |
|
boxes_coords (Tensor): A tensor of shape (R, 4) that contains bounding boxes. |
|
coordinates. |
|
point_coords (Tensor): A tensor of shape (R, P, 2) that contains |
|
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points. |
|
|
|
Returns: |
|
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains |
|
image-normalized coordinates of P sampled points. |
|
""" |
|
with torch.no_grad(): |
|
point_coords_wrt_image = point_coords.clone() |
|
point_coords_wrt_image[:, :, 0] = point_coords_wrt_image[:, :, 0] * ( |
|
boxes_coords[:, None, 2] - boxes_coords[:, None, 0] |
|
) |
|
point_coords_wrt_image[:, :, 1] = point_coords_wrt_image[:, :, 1] * ( |
|
boxes_coords[:, None, 3] - boxes_coords[:, None, 1] |
|
) |
|
point_coords_wrt_image[:, :, 0] += boxes_coords[:, None, 0] |
|
point_coords_wrt_image[:, :, 1] += boxes_coords[:, None, 1] |
|
return point_coords_wrt_image |
|
|
|
|
|
def sample_point_labels(instances, point_coords): |
|
""" |
|
Sample point labels from ground truth mask given point_coords. |
|
|
|
Args: |
|
instances (list[Instances]): A list of N Instances, where N is the number of images |
|
in the batch. So, i_th elememt of the list contains R_i objects and R_1 + ... + R_N is |
|
equal to R. The ground-truth gt_masks in each instance will be used to compute labels. |
|
points_coords (Tensor): A tensor of shape (R, P, 2), where R is the total number of |
|
instances and P is the number of points for each instance. The coordinates are in |
|
the absolute image pixel coordinate space, i.e. [0, H] x [0, W]. |
|
|
|
Returns: |
|
Tensor: A tensor of shape (R, P) that contains the labels of P sampled points. |
|
""" |
|
with torch.no_grad(): |
|
gt_mask_logits = [] |
|
point_coords_splits = torch.split( |
|
point_coords, [len(instances_per_image) for instances_per_image in instances] |
|
) |
|
for i, instances_per_image in enumerate(instances): |
|
if len(instances_per_image) == 0: |
|
continue |
|
assert isinstance( |
|
instances_per_image.gt_masks, BitMasks |
|
), "Point head works with GT in 'bitmask' format. Set INPUT.MASK_FORMAT to 'bitmask'." |
|
|
|
gt_bit_masks = instances_per_image.gt_masks.tensor |
|
h, w = instances_per_image.gt_masks.image_size |
|
scale = torch.tensor([w, h], dtype=torch.float, device=gt_bit_masks.device) |
|
points_coord_grid_sample_format = point_coords_splits[i] / scale |
|
gt_mask_logits.append( |
|
point_sample( |
|
gt_bit_masks.to(torch.float32).unsqueeze(1), |
|
points_coord_grid_sample_format, |
|
align_corners=False, |
|
).squeeze(1) |
|
) |
|
|
|
point_labels = cat(gt_mask_logits) |
|
return point_labels |
|
|