Inference Endpoints
File size: 4,785 Bytes
a567fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Jialian Wu from https://github.com/facebookresearch/Detic/blob/main/detic/modeling/roi_heads/detic_fast_rcnn.py
import torch
from fvcore.nn import giou_loss, smooth_l1_loss
from torch import nn
from torch.nn import functional as F
import fvcore.nn.weight_init as weight_init
from detectron2.config import configurable
from detectron2.layers import ShapeSpec, batched_nms, cat, cross_entropy, nonzero_tuple
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers
from detectron2.modeling.roi_heads.fast_rcnn import _log_classification_stats


__all__ = ["GRiTFastRCNNOutputLayers"]


class GRiTFastRCNNOutputLayers(FastRCNNOutputLayers):
    @configurable
    def __init__(
        self, 
        input_shape: ShapeSpec,
        **kwargs,
    ):
        super().__init__(
            input_shape=input_shape, 
            **kwargs,
        )

        input_size = input_shape.channels * \
            (input_shape.width or 1) * (input_shape.height or 1)

        self.bbox_pred = nn.Sequential(
            nn.Linear(input_size, input_size),
            nn.ReLU(inplace=True),
            nn.Linear(input_size, 4)
        )
        weight_init.c2_xavier_fill(self.bbox_pred[0])
        nn.init.normal_(self.bbox_pred[-1].weight, std=0.001)
        nn.init.constant_(self.bbox_pred[-1].bias, 0)

    @classmethod
    def from_config(cls, cfg, input_shape):
        ret = super().from_config(cfg, input_shape)
        return ret

    def losses(self, predictions, proposals):
        scores, proposal_deltas = predictions
        gt_classes = (
            cat([p.gt_classes for p in proposals], dim=0) if len(proposals) else torch.empty(0)
        )
        num_classes = self.num_classes
        _log_classification_stats(scores, gt_classes)

        if len(proposals):
            proposal_boxes = cat([p.proposal_boxes.tensor for p in proposals], dim=0)  # Nx4
            assert not proposal_boxes.requires_grad, "Proposals should not require gradients!"
            gt_boxes = cat(
                [(p.gt_boxes if p.has("gt_boxes") else p.proposal_boxes).tensor for p in proposals],
                dim=0,
            )
        else:
            proposal_boxes = gt_boxes = torch.empty((0, 4), device=proposal_deltas.device)

        loss_cls = self.softmax_cross_entropy_loss(scores, gt_classes)
        return {
            "loss_cls": loss_cls, 
            "loss_box_reg": self.box_reg_loss(
                proposal_boxes, gt_boxes, proposal_deltas, gt_classes, 
                num_classes=num_classes)
        }
    
    def softmax_cross_entropy_loss(self, pred_class_logits, gt_classes):
        if pred_class_logits.numel() == 0:
            return pred_class_logits.new_zeros([1])[0]

        loss = F.cross_entropy(
            pred_class_logits, gt_classes, reduction="mean")
        return loss

    def box_reg_loss(
        self, proposal_boxes, gt_boxes, pred_deltas, gt_classes, 
        num_classes=-1):
        num_classes = num_classes if num_classes > 0 else self.num_classes
        box_dim = proposal_boxes.shape[1]
        fg_inds = nonzero_tuple((gt_classes >= 0) & (gt_classes < num_classes))[0]
        if pred_deltas.shape[1] == box_dim:
            fg_pred_deltas = pred_deltas[fg_inds]
        else:
            fg_pred_deltas = pred_deltas.view(-1, self.num_classes, box_dim)[
                fg_inds, gt_classes[fg_inds]
            ]

        if self.box_reg_loss_type == "smooth_l1":
            gt_pred_deltas = self.box2box_transform.get_deltas(
                proposal_boxes[fg_inds],
                gt_boxes[fg_inds],
            )
            loss_box_reg = smooth_l1_loss(
                fg_pred_deltas, gt_pred_deltas, self.smooth_l1_beta, reduction="sum"
            )
        elif self.box_reg_loss_type == "giou":
            fg_pred_boxes = self.box2box_transform.apply_deltas(
                fg_pred_deltas, proposal_boxes[fg_inds]
            )
            loss_box_reg = giou_loss(fg_pred_boxes, gt_boxes[fg_inds], reduction="sum")
        else:
            raise ValueError(f"Invalid bbox reg loss type '{self.box_reg_loss_type}'")
        return loss_box_reg / max(gt_classes.numel(), 1.0)

    def predict_probs(self, predictions, proposals):
        scores = predictions[0]
        num_inst_per_image = [len(p) for p in proposals]
        probs = F.softmax(scores, dim=-1)
        return probs.split(num_inst_per_image, dim=0)

    def forward(self, x):
        if x.dim() > 2:
            x = torch.flatten(x, start_dim=1)
        scores = []

        cls_scores = self.cls_score(x)
        scores.append(cls_scores)
        scores = torch.cat(scores, dim=1)

        proposal_deltas = self.bbox_pred(x)
        return scores, proposal_deltas