Text Generation
Transformers
English
Japanese
Inference Endpoints
youyaoching commited on
Commit
cd81283
·
verified ·
1 Parent(s): 9ebed60

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +172 -3
README.md CHANGED
@@ -1,3 +1,172 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ - ja
6
+ base_model:
7
+ - trendmicro-ailab/Llama-Primus-Base
8
+ pipeline_tag: text-generation
9
+ extra_gated_fields:
10
+ Affiliation: text
11
+ Country: country
12
+ I want to use this model for:
13
+ type: select
14
+ options:
15
+ - Research
16
+ - Commercial
17
+ - label: Other
18
+ value: other
19
+ Job title:
20
+ type: select
21
+ options:
22
+ - Student
23
+ - Research graduate
24
+ - AI researcher
25
+ - AI developer/engineer
26
+ - Cybersecurity researcher
27
+ - Reporter
28
+ - Other
29
+ geo: ip_location
30
+ library_name: transformers
31
+ datasets:
32
+ - trendmicro-ailab/Primus-Seed
33
+ - trendmicro-ailab/Primus-FineWeb
34
+ - trendmicro-ailab/Primus-Instruct
35
+ ---
36
+ # Primus: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training
37
+
38
+ <img src="https://i.imgur.com/PtqeTZw.png" alt="Llama-Primus-Merged Overview" width="60%">
39
+
40
+ > TL;DR: Llama-Primus-Merged was first pre-trained on a large cybersecurity corpus (2.77B, _Primus-Seed_ and _Primus-FineWeb_), and then instruction fine-tuned on around 1,000 carefully curated cybersecurity QA tasks (_Primus-Instruct_) to restore its instruction-following ability. Finally, it was merged with Llama-3.1-8B-Instruct, maintaining the same instruction-following capability while achieving a 🚀**14.84%** improvement in aggregated scores across multiple cybersecurity benchmarks.
41
+
42
+ **🔥 For more details, please refer to the paper: [[📄Paper]](https://arxiv.org/abs/2502.11191).**
43
+
44
+ ## Introduction
45
+
46
+ Large Language Models (LLMs) have demonstrated remarkable versatility in recent years, with promising applications in specialized domains such as finance, law, and biomedicine. However, in the domain of cybersecurity, we noticed a lack of open-source datasets specifically designed for LLM pre-training—even though much research has shown that LLMs acquire their knowledge during pre-training. To fill this gap, we present a collection of datasets covering multiple stages of cybersecurity LLM training, including pre-training (_Primus-Seed_ and _Primus-FineWeb_), instruction fine-tuning (_Primus-Instruct_), and reasoning data for distillation (_Primus-Reasoning_). Based on these datasets and Llama-3.1-8B-Instruct, we developed _Llama-Primus-Base_, _Llama-Primus-Merged_, and _Llama-Primus-Reasoning_. This model card is **Llama-Primus-Merged**.
47
+
48
+ > **Note:** No TrendMicro customer information is included.
49
+
50
+
51
+ ## Benchmark Results
52
+
53
+ - [Cybersecurity](#cybersecurity)
54
+ - [Function Calling](#function-calling)
55
+ - [Safety & Toxicity](#safety--toxicity)
56
+ - [Multilingual](#multilingual)
57
+ - [General Chat Performance](#general-chat-performance)
58
+ - [Long-Context](#long-context)
59
+
60
+
61
+
62
+ #### Cybersecurity
63
+
64
+
65
+
66
+ | **Metric** (5-shot, w/o CoT) | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
67
+ |---------------------------------|---------------------------|------------------------------|
68
+ | **CTI-Bench (MCQ)** | 0.6420 | 0.6656 |
69
+ | **CTI-Bench (CVE → CWE)** | 0.5910 | 0.6620 |
70
+ | **CTI-Bench (CVSS, _lower is better_)** | 1.2712 | 1.1233 |
71
+ | **CTI-Bench (ATE)** | 0.2721 | 0.3387 |
72
+ | **CyberMetric (500)** | 0.8560 | 0.8660 |
73
+ | **SecEval** | 0.4966 | 0.5062 |
74
+ | **Cissp (Exams in book)** | 0.7073 | 0.7191 |
75
+ | **_Agg._** | 2.29 | 2.63 ↑**14.84%** 🔥 |
76
+
77
+ CTI-Bench(CVSS) is scored using Mean Absolute Deviation (_lower is better_), CTI-ATE uses F1 score, and the others use accuracy. The aggregate score (_Agg._) is the sum of all benchmarks, with CTI-Bench(CVSS) negated.
78
+
79
+ References:
80
+ - **CyberMetric**: [CyberMetric: A Benchmark Dataset based on Retrieval-Augmented...](https://arxiv.org/abs/2402.07688)
81
+ - **CTI-Bench**: [CTIBench: A Benchmark for Evaluating LLMs in Cyber Threat Intelligence](https://arxiv.org/abs/2406.07599)
82
+ - **SecEval**: [SecEval: A Comprehensive Benchmark for Evaluating Cybersecurity Knowledge of Foundation Models](https://xuanwuai.github.io/SecEval/)
83
+
84
+
85
+
86
+ #### Function Calling
87
+
88
+
89
+ | **Metric** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged**|
90
+ |---------------|---------------------------|------------------------------|
91
+ | **BFCL (V2)** | 73.02 (prompt) | 74.77 (prompt) | - |
92
+
93
+
94
+
95
+ Reference:
96
+
97
+ - [BFCL (V2)](https://gorilla.cs.berkeley.edu/blogs/12_bfcl_v2_live.html)
98
+
99
+
100
+
101
+ ### Safety & Toxicity
102
+
103
+
104
+
105
+ | **Metric** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
106
+ |----------------------------------|---------------------------|------------------------------|
107
+ | **dan (Jailbreak)** | 28.98% | 41.70% |
108
+ | **encoding (Jailbreak)** | 100.00% | 100.00% |
109
+ | **goodside (Hallucination/Injection)** | 77.08% | 72.10% |
110
+ | **latentinjection (Injection)** | 75.55% | 74.00% |
111
+ | **leakreplay (Copyright)** | 95.71% | 96.90% |
112
+ | **malwaregen (Disallowed)** | 14.34% | 29.00% |
113
+ | **realtoxicityprompts (Disallowed)** | 90.03% | 85.40% |
114
+ | **snowball (Hallucination)** | 59.67% | 84.20% |
115
+ | **xss (Injection)** | 100.00% | 98.30% |
116
+ | **XSTest (Over Refuse)** | 93.20% | 83.20% |
117
+
118
+ References:
119
+
120
+ - **Garak**: [Garak Repository](https://github.com/leondz/garak)
121
+ - **XSTest**: [XSTest Repository](https://github.com/paul-rottger/exaggerated-safety)
122
+
123
+
124
+
125
+
126
+ ### Multilingual
127
+
128
+
129
+
130
+ | **Language** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
131
+ |---------------|---------------------------|------------------------------|
132
+ | **MMLU (English)** | 68.16% | 67.36% |
133
+ | **MMLU (Japanese)** | 49.22% | 47.85% |
134
+ | **MMLU (French)** | 58.91% | 58.14% |
135
+ | **MMLU (German)** | 57.70% | 56.68% |
136
+
137
+
138
+ References:
139
+ - **English**: [MMLU Dataset](https://arxiv.org/abs/2009.03300)
140
+ - **German/French**: [MLMM Evaluation](https://github.com/nlp-uoregon/mlmm-evaluation?tab=readme-ov-file)
141
+ - **Japanese**: [Freedom Intelligence MMLU Japanese](https://huggingface.co/datasets/FreedomIntelligence/MMLU_Japanese)
142
+
143
+
144
+
145
+
146
+ #### General Chat Performance
147
+
148
+ | **Metric** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
149
+ |-----------------|---------------------------|------------------------------|
150
+ | **MT Bench** | 8.3491 | 8.29375 |
151
+
152
+ Reference:
153
+ - [MT Bench](https://arxiv.org/abs/2306.05685)
154
+
155
+
156
+
157
+ ### Long-Context
158
+
159
+
160
+ | **Length** | **Llama-3.1-8B-Instruct** | **Llama-Primus-Merged** |
161
+ |------------|---------------------------|------------------------------|
162
+ | **8K+** | 51.08 | 50.66 |
163
+ | **16K+** | 29.18 | 27.13 |
164
+
165
+ Reference:
166
+ - [LongBench](https://arxiv.org/abs/2308.14508)
167
+
168
+ ## About _Primus_
169
+ _Primus_ is Trend Micro's pioneering family of lightweight, state-of-the-art open cybersecurity language models and datasets. Developed through our cutting-edge research initiatives and advanced technology, these resources share the innovative foundation that powers our enterprise-class [Trend Cybertron](https://newsroom.trendmicro.com/2025-02-25-Trend-Micro-Puts-Industry-Ahead-of-Cyberattacks-with-Industrys-First-Proactive-Cybersecurity-AI) solution. As an industry leader in cybersecurity, Trend Micro is proud to contribute these powerful, efficiency-optimized models and datasets to the community, while maintaining the excellence and reliability that define our global security standards.
170
+
171
+ ## License
172
+ This model is based on the MIT license, but you must also comply with the Llama 3.1 Community License Agreement.