Create codeparrot_training.py
Browse files- codeparrot_training.py +205 -0
codeparrot_training.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import GPT2LMHeadModel, AutoTokenizer
|
| 2 |
+
from transformers import AdamW, get_scheduler, set_seed
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from accelerate import Accelerator
|
| 5 |
+
import datasets, transformers
|
| 6 |
+
from huggingface_hub import Repository
|
| 7 |
+
|
| 8 |
+
from torch.utils.data import IterableDataset
|
| 9 |
+
from torch.utils.data.dataloader import DataLoader
|
| 10 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 11 |
+
from argparse import Namespace
|
| 12 |
+
import torch
|
| 13 |
+
import logging
|
| 14 |
+
import wandb
|
| 15 |
+
import time
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class ConstantLengthDataset(IterableDataset):
|
| 19 |
+
def __init__(self, tokenizer, dataset, seq_length=1024,
|
| 20 |
+
num_of_sequences=1024, chars_per_token=3.6):
|
| 21 |
+
self.tokenizer = tokenizer
|
| 22 |
+
self.concatenation_token_id = tokenizer.bos_token_id
|
| 23 |
+
self.dataset = dataset
|
| 24 |
+
self.seq_length = seq_length
|
| 25 |
+
self.input_characters = seq_length * chars_per_token * num_of_sequences
|
| 26 |
+
self.produced_samples = 0
|
| 27 |
+
def __iter__(self):
|
| 28 |
+
iterator = iter(self.dataset)
|
| 29 |
+
more_examples = True
|
| 30 |
+
while more_examples:
|
| 31 |
+
buffer = []
|
| 32 |
+
buffer_len = 0
|
| 33 |
+
while True:
|
| 34 |
+
if buffer_len >= self.input_characters:
|
| 35 |
+
break
|
| 36 |
+
try:
|
| 37 |
+
buffer.append(next(iterator)['content'])
|
| 38 |
+
buffer_len += len(buffer[-1])
|
| 39 |
+
except StopIteration:
|
| 40 |
+
more_examples = False
|
| 41 |
+
break
|
| 42 |
+
tokenized_inputs = tokenizer(buffer, truncation=False)['input_ids']
|
| 43 |
+
all_token_ids = []
|
| 44 |
+
for tokenized_input in tokenized_inputs:
|
| 45 |
+
all_token_ids.extend(tokenized_input + [self.concatenation_token_id])
|
| 46 |
+
for i in range(0, len(all_token_ids), self.seq_length):
|
| 47 |
+
input_ids = all_token_ids[i : i + self.seq_length]
|
| 48 |
+
if len(input_ids) == self.seq_length:
|
| 49 |
+
yield torch.tensor(input_ids)
|
| 50 |
+
|
| 51 |
+
def setup_logging(project_name):
|
| 52 |
+
logger = logging.getLogger(__name__)
|
| 53 |
+
logging.basicConfig(
|
| 54 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 55 |
+
datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO,)
|
| 56 |
+
if accelerator.is_main_process: # we only want to setup logging once
|
| 57 |
+
wandb.init(project=project_name, config=args)
|
| 58 |
+
run_name = wandb.run.name
|
| 59 |
+
tb_writer = SummaryWriter()
|
| 60 |
+
tb_writer.add_hparams(vars(args), {'0': 0})
|
| 61 |
+
logger.setLevel(logging.INFO)
|
| 62 |
+
datasets.utils.logging.set_verbosity_warning()
|
| 63 |
+
transformers.utils.logging.set_verbosity_info()
|
| 64 |
+
else:
|
| 65 |
+
tb_writer = None
|
| 66 |
+
run_name = ''
|
| 67 |
+
logger.setLevel(logging.ERROR)
|
| 68 |
+
datasets.utils.logging.set_verbosity_error()
|
| 69 |
+
transformers.utils.logging.set_verbosity_error()
|
| 70 |
+
return logger, tb_writer, run_name
|
| 71 |
+
|
| 72 |
+
def create_dataloaders(dataset_name):
|
| 73 |
+
train_data = load_dataset(dataset_name+'-train', split="train",
|
| 74 |
+
streaming=True)
|
| 75 |
+
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer,
|
| 76 |
+
seed=args.seed)
|
| 77 |
+
valid_data = load_dataset(dataset_name+'-valid', split="train",
|
| 78 |
+
streaming=True)
|
| 79 |
+
train_dataset = ConstantLengthDataset(tokenizer, train_data,
|
| 80 |
+
seq_length=args.seq_length)
|
| 81 |
+
valid_dataset = ConstantLengthDataset(tokenizer, valid_data,
|
| 82 |
+
seq_length=args.seq_length)
|
| 83 |
+
train_dataloader=DataLoader(train_dataset, batch_size=args.train_batch_size)
|
| 84 |
+
eval_dataloader=DataLoader(valid_dataset, batch_size=args.valid_batch_size)
|
| 85 |
+
return train_dataloader, eval_dataloader
|
| 86 |
+
|
| 87 |
+
def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
|
| 88 |
+
params_with_wd, params_without_wd = [], []
|
| 89 |
+
for n, p in model.named_parameters():
|
| 90 |
+
if any(nd in n for nd in no_decay): params_without_wd.append(p)
|
| 91 |
+
else: params_with_wd.append(p)
|
| 92 |
+
return [{'params': params_with_wd, 'weight_decay': args.weight_decay},
|
| 93 |
+
{'params': params_without_wd, 'weight_decay': 0.0}]
|
| 94 |
+
|
| 95 |
+
def log_metrics(step, metrics):
|
| 96 |
+
logger.info(f"Step {step}: {metrics}")
|
| 97 |
+
if accelerator.is_main_process:
|
| 98 |
+
wandb.log(metrics)
|
| 99 |
+
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
|
| 100 |
+
|
| 101 |
+
def evaluate():
|
| 102 |
+
model.eval()
|
| 103 |
+
losses = []
|
| 104 |
+
for step, batch in enumerate(eval_dataloader):
|
| 105 |
+
with torch.no_grad():
|
| 106 |
+
outputs = model(batch, labels=batch)
|
| 107 |
+
loss = outputs.loss.repeat(args.valid_batch_size)
|
| 108 |
+
losses.append(accelerator.gather(loss))
|
| 109 |
+
if args.max_eval_steps > 0 and step >= args.max_eval_steps: break
|
| 110 |
+
loss = torch.mean(torch.cat(losses))
|
| 111 |
+
try: perplexity = torch.exp(loss)
|
| 112 |
+
except OverflowError: perplexity = float("inf")
|
| 113 |
+
return loss.item(), perplexity.item()
|
| 114 |
+
|
| 115 |
+
# Hyperparameters
|
| 116 |
+
project_name = 'transformersbook/codeparrot'
|
| 117 |
+
dataset_name = 'transformersbook/codeparrot'
|
| 118 |
+
config = {"train_batch_size": 4,
|
| 119 |
+
"valid_batch_size": 4,
|
| 120 |
+
"weight_decay": 0.1,
|
| 121 |
+
"shuffle_buffer": 1000,
|
| 122 |
+
"learning_rate": 5e-4,
|
| 123 |
+
"lr_scheduler_type": "cosine",
|
| 124 |
+
"num_warmup_steps": 1000,
|
| 125 |
+
"gradient_accumulation_steps": 2,
|
| 126 |
+
"max_train_steps": 24_000,
|
| 127 |
+
"max_eval_steps": 500,
|
| 128 |
+
"seq_length": 1024,
|
| 129 |
+
"seed": 1,
|
| 130 |
+
"save_checkpoint_steps":6_000,}
|
| 131 |
+
args = Namespace(**config)
|
| 132 |
+
set_seed(args.seed)
|
| 133 |
+
|
| 134 |
+
# Accelerator
|
| 135 |
+
accelerator = Accelerator()
|
| 136 |
+
samples_per_step = accelerator.state.num_processes * args.train_batch_size
|
| 137 |
+
|
| 138 |
+
# Logging
|
| 139 |
+
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
|
| 140 |
+
logger.info(accelerator.state)
|
| 141 |
+
|
| 142 |
+
# Load model and tokenizer
|
| 143 |
+
if accelerator.is_main_process: # we only want to setup logging once
|
| 144 |
+
hf_repo = Repository("./", clone_from=project_name, revision=run_name)
|
| 145 |
+
model = GPT2LMHeadModel.from_pretrained("./")
|
| 146 |
+
tokenizer = AutoTokenizer.from_pretrained("./")
|
| 147 |
+
|
| 148 |
+
# Load dataset and dataloader
|
| 149 |
+
train_dataloader, eval_dataloader = create_dataloaders(dataset_name)
|
| 150 |
+
|
| 151 |
+
# Prepare the optimizer and learning rate scheduler
|
| 152 |
+
optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate)
|
| 153 |
+
lr_scheduler = get_scheduler(name=args.lr_scheduler_type, optimizer=optimizer,
|
| 154 |
+
num_warmup_steps=args.num_warmup_steps,
|
| 155 |
+
num_training_steps=args.max_train_steps,)
|
| 156 |
+
def get_lr(): return optimizer.param_groups[0]['lr']
|
| 157 |
+
|
| 158 |
+
# Prepare everything with our `accelerator`.
|
| 159 |
+
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
|
| 160 |
+
model, optimizer, train_dataloader, eval_dataloader)
|
| 161 |
+
|
| 162 |
+
# Train model
|
| 163 |
+
model.train()
|
| 164 |
+
completed_steps = 0
|
| 165 |
+
t0 = time.time()
|
| 166 |
+
for step, batch in enumerate(train_dataloader, start=1):
|
| 167 |
+
t1 = time.time()
|
| 168 |
+
loss = model(batch, labels=batch).loss
|
| 169 |
+
t2 = time.time()
|
| 170 |
+
log_metrics(step, {'lr': get_lr(), 'samples': step*samples_per_step,
|
| 171 |
+
'steps': completed_steps, 'loss/train': loss.item()})
|
| 172 |
+
loss = loss / args.gradient_accumulation_steps
|
| 173 |
+
accelerator.backward(loss)
|
| 174 |
+
t3 = time.time()
|
| 175 |
+
if step % args.gradient_accumulation_steps == 0:
|
| 176 |
+
optimizer.step()
|
| 177 |
+
lr_scheduler.step()
|
| 178 |
+
optimizer.zero_grad()
|
| 179 |
+
completed_steps += 1
|
| 180 |
+
if step % args.save_checkpoint_steps == 0:
|
| 181 |
+
logger.info('Evaluating and saving model checkpoint')
|
| 182 |
+
eval_loss, perplexity = evaluate()
|
| 183 |
+
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
|
| 184 |
+
accelerator.wait_for_everyone()
|
| 185 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 186 |
+
if accelerator.is_main_process:
|
| 187 |
+
unwrapped_model.save_pretrained("./")
|
| 188 |
+
hf_repo.push_to_hub(commit_message=f'step {step}')
|
| 189 |
+
model.train()
|
| 190 |
+
if completed_steps >= args.max_train_steps:
|
| 191 |
+
break
|
| 192 |
+
t4 = time.time()
|
| 193 |
+
#logger.info(f'ITER: {t1-t0:.3f}, FRWD: {t2-t1:.3f}, BKWD: {t3-t2:.3f}, OPT: {t4-t3:.3f}, ALL: {t4-t0}')
|
| 194 |
+
t0 = time.time()
|
| 195 |
+
|
| 196 |
+
# Evaluate and save the last checkpoint
|
| 197 |
+
logger.info('Evaluating and saving model after training')
|
| 198 |
+
eval_loss, perplexity = evaluate()
|
| 199 |
+
log_metrics(step, {'loss/eval': eval_loss, 'perplexity': perplexity})
|
| 200 |
+
accelerator.wait_for_everyone()
|
| 201 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
| 202 |
+
if accelerator.is_main_process:
|
| 203 |
+
unwrapped_model.save_pretrained("./")
|
| 204 |
+
try: hf_repo.push_to_hub(commit_message=f'final model')
|
| 205 |
+
except: logger.info('No changes to previously saved model.')
|