#!/bin/bash #SBATCH -A csc605 #SBATCH -J ETTh1_inital #SBATCH -o logs/etth1/%x-%j.o #SBATCH -e logs/etth1/%x-%j.e #SBATCH -t 01:45:00 #SBATCH -p batch #SBATCH -N 1 # Only necessary if submitting like: sbatch --export=NONE ... (recommended) # Do NOT include this line when submitting without --export=NONE unset SLURM_EXPORT_ENV # Load modules module load PrgEnv-gnu/8.5.0 module load rocm/5.7.1 module load craype-accel-amd-gfx90a module load miniforge3/23.11.0-0 # Activate your environment ENV_NAME=time-llm-env export PATH="/lustre/orion/csc605/scratch/rolandriachi/$ENV_NAME/bin:$PATH" source /autofs/nccs-svm1_sw/frontier/miniforge3/23.11.0/etc/profile.d/conda.sh conda activate time-llm-env export MIOPEN_USER_DB_PATH="$SCRATCH/my-miopen-cache" export MIOPEN_CUSTOM_CACHE_DIR=${MIOPEN_USER_DB_PATH} rm -rf ${MIOPEN_USER_DB_PATH} mkdir -p ${MIOPEN_USER_DB_PATH} # V --- Time-LLM Config Args --- V model_name=TimeLLM # Or, DLinear train_epochs=50 learning_rate=0.001 llama_layers=32 batch_size=16 d_model=32 d_ff=128 comment='TimeLLM-ETTh1' # Or, 'DLinear-ETTh1' export LAUNCHER="accelerate launch \ --num_processes 1 \ --num_machines 1 \ --mixed_precision bf16 \ --dynamo_backend no \ " # To resume training, include a --resume flag $LAUNCHER run_main.py \ --task_name long_term_forecast \ --is_training 1 \ --root_path ./dataset/ETT-small/ \ --data_path ETTh1.csv \ --model_id ETTh1_512_96 \ --model $model_name \ --data ETTh1 \ --features M \ --seq_len 96 \ --label_len 48 \ --pred_len 96 \ --factor 3 \ --enc_in 7 \ --dec_in 7 \ --c_out 7 \ --des 'Exp' \ --itr 1 \ --d_model $d_model \ --d_ff $d_ff \ --batch_size $batch_size \ --learning_rate $learning_rate \ --llm_layers $llama_layers \ --train_epochs $train_epochs \ --model_comment $comment \