trancite's picture
This is my first Reinforcement Learning work!
b608b8e verified
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f059e5aa7a0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f059e5aa840>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f059e5aa8e0>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f059e5aa980>",
"_build": "<function ActorCriticPolicy._build at 0x7f059e5aaa20>",
"forward": "<function ActorCriticPolicy.forward at 0x7f059e5aaac0>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f059e5aab60>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f059e5aac00>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f059e5aaca0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f059e5aad40>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f059e5aade0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f059e5aae80>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f05a4782000>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 2015232,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1738411327510194745,
"learning_rate": 0.0003,
"tensorboard_log": null,
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOYMKz41qHM/A18/PemUB7+PXUw+DinCvQAAAAAAAAAAzSj/PHvaibqwIXy1q8JDsEGYKjpDkLo0AACAPwAAgD/m38G9besTPtQjgj7Kk1O+1E/iPNhG2D0AAAAAAAAAALOMq73F7v485mEvPgZrYb7IZxG77uYNPQAAAAAAAAAAAPy0vAjEsT/yQDu/IFe1voFJnTzpvaU9AAAAAAAAAACa4bc7KShAumWZhLizAxezbFFeuM7bmzcAAIA/AACAPzNJUzyPEhm8SZQSPY3jZD3jTm+9w+tePQAAgD8AAIA/gHAPvewhs7lU2rS3Ikrmr81OaztTFtU2AACAPwAAgD8Cpbq+Lq6RP37ME7/1j0O/wLn2vuBrLb4AAAAAAAAAADMTF7o4/KK7G12Pu2lVkjyuWPI8crl4vQAAgD8AAIA/YCIoPkClzj5uVOS9umm1vjrbQj0RuMC9AAAAAAAAAACaEpk8PQ19uwcsHz1uraa9wLO+OgYxgz0AAIA/AACAP+aWSL3SF44/YvU2vlmWKr/lw/G95zmtvQAAAAAAAAAAAFgtvBwLuD+uU1C+oFY+Poq9cTsvma28AAAAAAAAAADNfnM9UtjguZvIkDqP2Sk2kGWiO7L4qbkAAIA/AACAP2atyLwUjIS6/ZiiNZMlyDA5+au3DK24tAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.007616000000000067,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV+AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHCo6oMrmQuMAWyUS/eMAXSUR0CuGlSOzY29dX2UKGgGR0BxOnvx6OYIaAdL0WgIR0CuGmhD5TIedX2UKGgGR0By/7642CNCaAdNBgFoCEdArhqgLLIPsnV9lChoBkdAcJgJWNm16WgHS9NoCEdArhrWvhZQpHV9lChoBkdAcQS/0/W1+mgHS9poCEdArhseRHPNV3V9lChoBkdAcsBDnvDxb2gHS+ZoCEdArhs3Gp++d3V9lChoBkdAcmS6UJOWSmgHS+doCEdArhtkS/TLGXV9lChoBkdAcZ8jurp7kWgHS+xoCEdArhtvjKgZj3V9lChoBkdAbwOQwK0D2mgHS+loCEdArhtyzeGfw3V9lChoBkdAb1viCJ40M2gHS/9oCEdArhu5uEVWS3V9lChoBkdAcUcwdbPhQ2gHS/ZoCEdArhvFENOM2nV9lChoBkdAberhttQ9BGgHS+ZoCEdArhvocYIjW3V9lChoBkdAcn08XenAI2gHS+toCEdArhvsAPuognV9lChoBkdAUcVTGYKIBWgHS6ZoCEdArhwaE8JUpHV9lChoBkdAcOWcsDnvD2gHS99oCEdArhz+6ErXlXV9lChoBkdAciqFTNt65WgHS9toCEdArh1DSb6P83V9lChoBkdAcJrALiMo+mgHS/toCEdArh1Prv9cbHV9lChoBkdAbgHyWAwwkGgHS95oCEdArh2RUedTYXV9lChoBkdAcZSHzYmLL2gHS81oCEdArh2hGKAJ9nV9lChoBkdAcy4qAjIJaGgHTRABaAhHQK4dxoIOYpl1fZQoaAZHQHHkPSMLncNoB0vfaAhHQK4d7Q+lj3F1fZQoaAZHQG8IFSKm8/VoB0vXaAhHQK4eWsjFAFB1fZQoaAZHQHGD9GViWmhoB0v0aAhHQK4eYaRZED11fZQoaAZHQHCsDx5LRKJoB00FAWgIR0CuHo2Vu76IdX2UKGgGR0BxwKZfD1oQaAdNBAFoCEdArh6ZlBhQWXV9lChoBkdAcBGORT0g82gHS+loCEdArh7KVhTfi3V9lChoBkdAb2vAfMfRu2gHS+FoCEdArh7slRgqmXV9lChoBkdAcIQE4ecQRWgHTSYBaAhHQK4fgDmKZUl1fZQoaAZHQHPlBzzVc2RoB006AWgIR0CuH5IxQBPsdX2UKGgGR0BwOkptrKvFaAdL22gIR0CuIAPKMefadX2UKGgGR0ByagPnSv1UaAdL8mgIR0CuIAo1UEPldX2UKGgGR0BtH9Gy5Zr6aAdL3WgIR0CuIEDzyz5XdX2UKGgGR0BweMob4rSWaAdNAwFoCEdAriB4XVLBbnV9lChoBkdAcwzvy9VWCGgHS/NoCEdArioQnH/953V9lChoBkdAcSLR0U47zWgHS+5oCEdAriomcMEzPHV9lChoBkdAbl4EvkBCD2gHS/9oCEdAriqGgpSaVnV9lChoBkdAcIfng5zYEmgHS91oCEdArirKqwQlKXV9lChoBkdAb8is/Y8MeGgHS/1oCEdArise5paibnV9lChoBkdAcjfCdSVGC2gHS/toCEdArisfeBQN1HV9lChoBkdAcCPLeyiVSmgHS+FoCEdAris/2TPjXHV9lChoBkdAcLixoqTbFmgHS/RoCEdAritKpeeFtnV9lChoBkdAczc+GGmDUWgHS/RoCEdAriu33evZAnV9lChoBkdAcgyedCmdiGgHS9BoCEdArivvQSi/PHV9lChoBkdAZC5/JeVs12gHTegDaAhHQK4sABp5/sp1fZQoaAZHQHH9NIPK+ztoB0v4aAhHQK4snmzSkTJ1fZQoaAZHQHJ1Xo5ggHNoB0vhaAhHQK4tIw0wait1fZQoaAZHQHFQfBFd9lVoB00AAWgIR0CuLWDgZTAGdX2UKGgGR0BwOhwBHTZyaAdL4mgIR0CuLXTfzjFRdX2UKGgGR0ByeQewLVnVaAdL32gIR0CuLYu2Zy+6dX2UKGgGR0Bzy2pS75EdaAdLzWgIR0CuLdVkMCtBdX2UKGgGR0BzCRW0Z3s5aAdNMwFoCEdAri4qblRxcXV9lChoBkdAcwL08NhE0GgHTQgBaAhHQK4uUsySFGp1fZQoaAZHQHDQJ6dDpkhoB0vlaAhHQK4uwHQhOgx1fZQoaAZHQG546QV9F4NoB00IAWgIR0CuLw+H8CPqdX2UKGgGR0ByVG42CNCJaAdL+mgIR0CuL0hKtga4dX2UKGgGR0ByjybRWtEHaAdL/mgIR0CuL07Dl5nldX2UKGgGR0Bz8/mzSkTIaAdL6GgIR0CuL3cox59mdX2UKGgGR0By3VRHf/FSaAdL32gIR0CuL41NxlxwdX2UKGgGR0BwTBpvgm7baAdNGAFoCEdAri+cuDjBEnV9lChoBkdAcAcXFcY64mgHTQMBaAhHQK4wKsU7CBR1fZQoaAZHQEj3hKlHjIdoB0u0aAhHQK4wQcwxnFp1fZQoaAZHQHIMjf3vhIhoB0vmaAhHQK4wWjIq9Xd1fZQoaAZHQHMMI3aSLZVoB0v0aAhHQK4xF6ZYxL11fZQoaAZHQHE3THbRF7VoB00OAWgIR0CuMbWQnx8VdX2UKGgGR0By8sUeuFHsaAdNDwFoCEdArjHMka/ATXV9lChoBkdAcD2YL9deIGgHTQMBaAhHQK4x4nm7rcF1fZQoaAZHQHFGn5rP+n9oB0vnaAhHQK4yPpnpSrJ1fZQoaAZHQHFZ7LQokRloB0vLaAhHQK4yTjwQUYd1fZQoaAZHQHAq+/L1VYJoB0voaAhHQK4yfRuTA311fZQoaAZHQHALw5eZ5RloB0vdaAhHQK4ygwYcebN1fZQoaAZHQHF0pLdvbXZoB00aAWgIR0CuMolkQPI5dX2UKGgGR0BxjEQ176YWaAdLy2gIR0CuMomgi/widX2UKGgGR0BxU7Nu+AVgaAdL2mgIR0CuMprgXMyKdX2UKGgGR0ByqnLdN34caAdL2WgIR0CuMqWGh24edX2UKGgGR0Bx+iANG3F2aAdL1GgIR0CuMv+fh/AkdX2UKGgGR0ByLQ176YVqaAdNYAFoCEdArjMnnjhky3V9lChoBkdAcxDOKwY+CGgHTQQBaAhHQK4znPu5SWJ1fZQoaAZHQHCMsWGh24doB0vnaAhHQK4z39xZMcp1fZQoaAZHQHKBxMJx//hoB0vRaAhHQK40QEnLJS11fZQoaAZHQHI4i1uzhP1oB0vZaAhHQK40eHnEETx1fZQoaAZHQHDl562OQyRoB0vraAhHQK40iTZg5R11fZQoaAZHQHB8tKujh1loB0vbaAhHQK405qlgtvp1fZQoaAZHQG/UcVQAMlVoB0vhaAhHQK41UfcvduZ1fZQoaAZHQG9NLehwl0JoB0vraAhHQK41adlNDdB1fZQoaAZHQHM3hAB1cMVoB0v0aAhHQK41kRVZLZl1fZQoaAZHQHEvEgr6LwZoB0v3aAhHQK41ox2St/51fZQoaAZHQHKbhN/OMVFoB0v2aAhHQK41wbp/wy91fZQoaAZHQHL8CbhFVktoB00XAWgIR0CuNdCHIp6QdX2UKGgGR0ByOq6wt8NQaAdNqAFoCEdArjXqNEPUa3V9lChoBkdAcucyv9tMwmgHS+BoCEdArjYUAxSHd3V9lChoBkdAcpb/k/8l5WgHTRcBaAhHQK42F1qWTot1fZQoaAZHQHCLzK1XvH9oB0vWaAhHQK42YmMwUQF1fZQoaAZHQHJ3E1yeZohoB00VAWgIR0CuNnzgMtsfdX2UKGgGR0BuSEnVoYelaAdL6WgIR0CuNs+7cwg1dX2UKGgGR0Bty85ZKWcCaAdL6GgIR0CuNyCwSrYHdX2UKGgGR0BxbMAiml67aAdL9WgIR0CuN3iQLeANdX2UKGgGR0Bv2zLEDQqqaAdL+mgIR0CuN5d5prULdX2UKGgGR0Bv8W4XoC+2aAdL4GgIR0CuN/0Jv5xjdX2UKGgGR0BwqqXhOxjbaAdL22gIR0CuODsTFl06dX2UKGgGR0BxgupAD7qIaAdL7WgIR0CuOEPWH1vmdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 499,
"observation_space": {
":type:": "<class 'gymnasium.spaces.box.Box'>",
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
"dtype": "float32",
"bounded_below": "[ True True True True True True True True]",
"bounded_above": "[ True True True True True True True True]",
"_shape": [
8
],
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
"n": "4",
"start": "0",
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
}
}