File size: 1,307 Bytes
bf7dfcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
from flask import Flask, request, jsonify
from handler import EndpointHandler
import torch
app = Flask(__name__)
# Initialize the handler
handler = EndpointHandler()
@app.route('/predict', methods=['POST'])
def predict():
if 'file' not in request.files:
return jsonify({'error': 'No file provided'}), 400
file = request.files['file']
if file.filename == '':
return jsonify({'error': 'No file selected'}), 400
# Read the file bytes
image_bytes = file.read()
# Get point prompts if provided
point_coords = request.form.get('point_coords')
point_labels = request.form.get('point_labels')
# Process with handler
try:
if point_coords and point_labels:
# Convert string inputs to lists
point_coords = eval(point_coords) # e.g. "[[500, 375]]"
point_labels = eval(point_labels) # e.g. "[1]"
result = handler({
'image': image_bytes,
'point_coords': point_coords,
'point_labels': point_labels
})
else:
result = handler(image_bytes)
return jsonify(result)
except Exception as e:
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(debug=True, port=5000) |