--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - dpo - generated_from_trainer model-index: - name: Llama0-3-8b-ultra-p-0.05-lr1e-6-e1 results: [] --- # Llama0-3-8b-ultra-p-0.05-lr1e-6-e1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5155 - Rewards/chosen: -0.8052 - Rewards/rejected: -1.6601 - Rewards/accuracies: 0.75 - Rewards/margins: 0.8549 - Logps/rejected: -430.6040 - Logps/chosen: -337.1520 - Logits/rejected: 0.5600 - Logits/chosen: 0.4444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.5887 | 0.2060 | 100 | 0.5813 | -0.4118 | -0.7745 | 0.6875 | 0.3628 | -342.0493 | -297.8121 | 0.1168 | 0.0514 | | 0.5536 | 0.4119 | 200 | 0.5446 | -0.6533 | -1.3097 | 0.7031 | 0.6564 | -395.5632 | -321.9608 | 0.3951 | 0.2772 | | 0.5319 | 0.6179 | 300 | 0.5262 | -0.6809 | -1.4161 | 0.7344 | 0.7353 | -406.2091 | -324.7231 | 0.4856 | 0.3738 | | 0.5268 | 0.8239 | 400 | 0.5195 | -0.7599 | -1.5725 | 0.7344 | 0.8126 | -421.8436 | -332.6288 | 0.5181 | 0.3998 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1