Extend README heavily
Browse files
README.md
CHANGED
@@ -8,11 +8,95 @@ tags:
|
|
8 |
- ner
|
9 |
- named-entity-recognition
|
10 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
-
# SpanMarker for Named Entity Recognition
|
14 |
|
15 |
-
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for Named Entity Recognition. In particular, this SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
## Usage
|
18 |
|
@@ -28,9 +112,139 @@ You can then run inference with this model like so:
|
|
28 |
from span_marker import SpanMarkerModel
|
29 |
|
30 |
# Download from the 🤗 Hub
|
31 |
-
model = SpanMarkerModel.from_pretrained("
|
32 |
# Run inference
|
33 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
34 |
```
|
35 |
|
36 |
-
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
- ner
|
9 |
- named-entity-recognition
|
10 |
pipeline_tag: token-classification
|
11 |
+
widget:
|
12 |
+
- text: "Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano Atlántico hasta París ."
|
13 |
+
example_title: "Spanish"
|
14 |
+
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris ."
|
15 |
+
example_title: "English"
|
16 |
+
- text: "Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers l' ocean Atlantique jusqu'à Paris ."
|
17 |
+
example_title: "French"
|
18 |
+
- text: "Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den Atlantik nach Paris ."
|
19 |
+
example_title: "German"
|
20 |
+
- text: "Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B через Атлантический океан в Париж ."
|
21 |
+
example_title: "Russian"
|
22 |
+
- text: "Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de Atlantische Oceaan naar Parijs ."
|
23 |
+
example_title: "Dutch"
|
24 |
+
- text: "Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega 5B przez Ocean Atlantycki do Paryża ."
|
25 |
+
example_title: "Polish"
|
26 |
+
- text: "Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til Parísar ."
|
27 |
+
example_title: "Icelandic"
|
28 |
+
- text: "Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα από τον Ατλαντικό Ωκεανό στο Παρίσι ."
|
29 |
+
example_title: "Greek"
|
30 |
+
model-index:
|
31 |
+
- name: SpanMarker w. bert-base-multilingual-cased on MultiNERD by Tom Aarsen
|
32 |
+
results:
|
33 |
+
- task:
|
34 |
+
type: token-classification
|
35 |
+
name: Named Entity Recognition
|
36 |
+
dataset:
|
37 |
+
type: Babelscape/multinerd
|
38 |
+
name: MultiNERD
|
39 |
+
split: test
|
40 |
+
revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
|
41 |
+
metrics:
|
42 |
+
- type: f1
|
43 |
+
value: 0.92478
|
44 |
+
name: F1
|
45 |
+
- type: precision
|
46 |
+
value: 0.93385
|
47 |
+
name: Precision
|
48 |
+
- type: recall
|
49 |
+
value: 0.91588
|
50 |
+
name: Recall
|
51 |
+
datasets:
|
52 |
+
- Babelscape/multinerd
|
53 |
+
language:
|
54 |
+
- multilingual
|
55 |
+
metrics:
|
56 |
+
- f1
|
57 |
+
- recall
|
58 |
+
- precision
|
59 |
---
|
60 |
|
61 |
+
# SpanMarker for Multilingual Named Entity Recognition
|
62 |
|
63 |
+
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for multilingual Named Entity Recognition trained on the [MultiNERD](https://huggingface.co/datasets/Babelscape/multinerd) dataset. In particular, this SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder. See [train.py](train.py) for the training script.
|
64 |
+
|
65 |
+
## Metrics
|
66 |
+
|
67 |
+
| **Language** | **F1** | **Precision** | **Recall** |
|
68 |
+
|--------------|--------|---------------|------------|
|
69 |
+
| **all** | 92.48 | 93.39 | 91.59 |
|
70 |
+
| **de** | 94.76 | 95.21 | 94.32 |
|
71 |
+
| **en** | 95.18 | 95.07 | 95.29 |
|
72 |
+
| **es** | 91.53 | 93.50 | 89.65 |
|
73 |
+
| **fr** | 91.92 | 93.86 | 90.07 |
|
74 |
+
| **it** | 92.59 | 91.63 | 93.57 |
|
75 |
+
| **nl** | 93.27 | 94.86 | 91.74 |
|
76 |
+
| **pl** | 92.66 | 93.51 | 91.83 |
|
77 |
+
| **pt** | 92.86 | 94.48 | 91.30 |
|
78 |
+
| **ru** | 93.39 | 93.70 | 93.10 |
|
79 |
+
| **zh** | 87.02 | 88.36 | 85.71 |
|
80 |
+
|
81 |
+
## Label set
|
82 |
+
|
83 |
+
| Class | Description | Examples |
|
84 |
+
|-------|-------------|----------|
|
85 |
+
PER (person) | People | Ray Charles, Jessica Alba, Leonardo DiCaprio, Roger Federer, Anna Massey. |
|
86 |
+
ORG (organization) | Associations, companies, agencies, institutions, nationalities and religious or political groups | University of Edinburgh, San Francisco Giants, Google, Democratic Party. |
|
87 |
+
LOC (location) | Physical locations (e.g. mountains, bodies of water), geopolitical entities (e.g. cities, states), and facilities (e.g. bridges, buildings, airports). | Rome, Lake Paiku, Chrysler Building, Mount Rushmore, Mississippi River. |
|
88 |
+
ANIM (animal) | Breeds of dogs, cats and other animals, including their scientific names. | Maine Coon, African Wild Dog, Great White Shark, New Zealand Bellbird. |
|
89 |
+
BIO (biological) | Genus of fungus, bacteria and protoctists, families of viruses, and other biological entities. | Herpes Simplex Virus, Escherichia Coli, Salmonella, Bacillus Anthracis. |
|
90 |
+
CEL (celestial) | Planets, stars, asteroids, comets, nebulae, galaxies and other astronomical objects. | Sun, Neptune, Asteroid 187 Lamberta, Proxima Centauri, V838 Monocerotis. |
|
91 |
+
DIS (disease) | Physical, mental, infectious, non-infectious, deficiency, inherited, degenerative, social and self-inflicted diseases. | Alzheimer’s Disease, Cystic Fibrosis, Dilated Cardiomyopathy, Arthritis. |
|
92 |
+
EVE (event) | Sport events, battles, wars and other events. | American Civil War, 2003 Wimbledon Championships, Cannes Film Festival. |
|
93 |
+
FOOD (food) | Foods and drinks. | Carbonara, Sangiovese, Cheddar Beer Fondue, Pizza Margherita. |
|
94 |
+
INST (instrument) | Technological instruments, mechanical instruments, musical instruments, and other tools. | Spitzer Space Telescope, Commodore 64, Skype, Apple Watch, Fender Stratocaster. |
|
95 |
+
MEDIA (media) | Titles of films, books, magazines, songs and albums, fictional characters and languages. | Forbes, American Psycho, Kiss Me Once, Twin Peaks, Disney Adventures. |
|
96 |
+
PLANT (plant) | Types of trees, flowers, and other plants, including their scientific names. | Salix, Quercus Petraea, Douglas Fir, Forsythia, Artemisia Maritima. |
|
97 |
+
MYTH (mythological) | Mythological and religious entities. | Apollo, Persephone, Aphrodite, Saint Peter, Pope Gregory I, Hercules. |
|
98 |
+
TIME (time) | Specific and well-defined time intervals, such as eras, historical periods, centuries, years and important days. No months and days of the week. | Renaissance, Middle Ages, Christmas, Great Depression, 17th Century, 2012. |
|
99 |
+
VEHI (vehicle) | Cars, motorcycles and other vehicles. | Ferrari Testarossa, Suzuki Jimny, Honda CR-X, Boeing 747, Fairey Fulmar.
|
100 |
|
101 |
## Usage
|
102 |
|
|
|
112 |
from span_marker import SpanMarkerModel
|
113 |
|
114 |
# Download from the 🤗 Hub
|
115 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd")
|
116 |
# Run inference
|
117 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
118 |
```
|
119 |
|
120 |
+
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
|
121 |
+
|
122 |
+
## Training procedure
|
123 |
+
|
124 |
+
### Training hyperparameters
|
125 |
+
|
126 |
+
The following hyperparameters were used during training:
|
127 |
+
- learning_rate: 5e-05
|
128 |
+
- train_batch_size: 32
|
129 |
+
- eval_batch_size: 32
|
130 |
+
- seed: 42
|
131 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
132 |
+
- lr_scheduler_type: linear
|
133 |
+
- lr_scheduler_warmup_ratio: 0.1
|
134 |
+
- num_epochs: 1
|
135 |
+
|
136 |
+
### Training results
|
137 |
+
|
138 |
+
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
139 |
+
|:-------------:|:-----:|:------:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
140 |
+
| 0.0179 | 0.01 | 1000 | 0.0146 | 0.8101 | 0.7616 | 0.7851 | 0.9530 |
|
141 |
+
| 0.0099 | 0.02 | 2000 | 0.0091 | 0.8571 | 0.8425 | 0.8498 | 0.9663 |
|
142 |
+
| 0.0085 | 0.03 | 3000 | 0.0078 | 0.8729 | 0.8579 | 0.8653 | 0.9700 |
|
143 |
+
| 0.0075 | 0.04 | 4000 | 0.0072 | 0.8821 | 0.8724 | 0.8772 | 0.9739 |
|
144 |
+
| 0.0074 | 0.05 | 5000 | 0.0075 | 0.8622 | 0.8841 | 0.8730 | 0.9722 |
|
145 |
+
| 0.0074 | 0.06 | 6000 | 0.0067 | 0.9056 | 0.8568 | 0.8805 | 0.9749 |
|
146 |
+
| 0.0066 | 0.07 | 7000 | 0.0065 | 0.9082 | 0.8543 | 0.8804 | 0.9737 |
|
147 |
+
| 0.0063 | 0.08 | 8000 | 0.0066 | 0.9039 | 0.8617 | 0.8823 | 0.9745 |
|
148 |
+
| 0.0062 | 0.09 | 9000 | 0.0062 | 0.9323 | 0.8425 | 0.8852 | 0.9754 |
|
149 |
+
| 0.007 | 0.1 | 10000 | 0.0066 | 0.8898 | 0.8758 | 0.8827 | 0.9746 |
|
150 |
+
| 0.006 | 0.11 | 11000 | 0.0061 | 0.8986 | 0.8841 | 0.8913 | 0.9766 |
|
151 |
+
| 0.006 | 0.12 | 12000 | 0.0061 | 0.9171 | 0.8628 | 0.8891 | 0.9763 |
|
152 |
+
| 0.0062 | 0.13 | 13000 | 0.0060 | 0.9264 | 0.8634 | 0.8938 | 0.9772 |
|
153 |
+
| 0.0059 | 0.14 | 14000 | 0.0059 | 0.9323 | 0.8508 | 0.8897 | 0.9763 |
|
154 |
+
| 0.0059 | 0.15 | 15000 | 0.0060 | 0.9011 | 0.8815 | 0.8912 | 0.9758 |
|
155 |
+
| 0.0059 | 0.16 | 16000 | 0.0060 | 0.9221 | 0.8598 | 0.8898 | 0.9763 |
|
156 |
+
| 0.0056 | 0.17 | 17000 | 0.0058 | 0.9098 | 0.8839 | 0.8967 | 0.9775 |
|
157 |
+
| 0.0055 | 0.18 | 18000 | 0.0060 | 0.9103 | 0.8739 | 0.8917 | 0.9765 |
|
158 |
+
| 0.0054 | 0.19 | 19000 | 0.0056 | 0.9135 | 0.8726 | 0.8925 | 0.9774 |
|
159 |
+
| 0.0052 | 0.2 | 20000 | 0.0058 | 0.9108 | 0.8834 | 0.8969 | 0.9773 |
|
160 |
+
| 0.0053 | 0.21 | 21000 | 0.0058 | 0.9038 | 0.8866 | 0.8951 | 0.9773 |
|
161 |
+
| 0.0057 | 0.22 | 22000 | 0.0057 | 0.9130 | 0.8762 | 0.8942 | 0.9775 |
|
162 |
+
| 0.0056 | 0.23 | 23000 | 0.0053 | 0.9375 | 0.8604 | 0.8973 | 0.9781 |
|
163 |
+
| 0.005 | 0.24 | 24000 | 0.0054 | 0.9253 | 0.8822 | 0.9032 | 0.9784 |
|
164 |
+
| 0.0055 | 0.25 | 25000 | 0.0055 | 0.9182 | 0.8807 | 0.8991 | 0.9787 |
|
165 |
+
| 0.0049 | 0.26 | 26000 | 0.0053 | 0.9311 | 0.8702 | 0.8997 | 0.9783 |
|
166 |
+
| 0.0051 | 0.27 | 27000 | 0.0054 | 0.9192 | 0.8877 | 0.9032 | 0.9787 |
|
167 |
+
| 0.0051 | 0.28 | 28000 | 0.0053 | 0.9332 | 0.8783 | 0.9049 | 0.9795 |
|
168 |
+
| 0.0049 | 0.29 | 29000 | 0.0054 | 0.9311 | 0.8672 | 0.8981 | 0.9789 |
|
169 |
+
| 0.0047 | 0.3 | 30000 | 0.0054 | 0.9165 | 0.8954 | 0.9058 | 0.9796 |
|
170 |
+
| 0.005 | 0.31 | 31000 | 0.0052 | 0.9079 | 0.9016 | 0.9047 | 0.9787 |
|
171 |
+
| 0.0051 | 0.32 | 32000 | 0.0051 | 0.9157 | 0.9001 | 0.9078 | 0.9796 |
|
172 |
+
| 0.0046 | 0.33 | 33000 | 0.0051 | 0.9147 | 0.8935 | 0.9040 | 0.9788 |
|
173 |
+
| 0.0046 | 0.34 | 34000 | 0.0050 | 0.9229 | 0.8847 | 0.9034 | 0.9793 |
|
174 |
+
| 0.005 | 0.35 | 35000 | 0.0051 | 0.9198 | 0.8922 | 0.9058 | 0.9796 |
|
175 |
+
| 0.0047 | 0.36 | 36000 | 0.0050 | 0.9321 | 0.8890 | 0.9100 | 0.9807 |
|
176 |
+
| 0.0048 | 0.37 | 37000 | 0.0050 | 0.9046 | 0.9133 | 0.9089 | 0.9800 |
|
177 |
+
| 0.0046 | 0.38 | 38000 | 0.0051 | 0.9170 | 0.8973 | 0.9071 | 0.9806 |
|
178 |
+
| 0.0048 | 0.39 | 39000 | 0.0050 | 0.9417 | 0.8775 | 0.9084 | 0.9805 |
|
179 |
+
| 0.0042 | 0.4 | 40000 | 0.0049 | 0.9238 | 0.8937 | 0.9085 | 0.9797 |
|
180 |
+
| 0.0038 | 0.41 | 41000 | 0.0048 | 0.9371 | 0.8920 | 0.9140 | 0.9812 |
|
181 |
+
| 0.0042 | 0.42 | 42000 | 0.0048 | 0.9359 | 0.8862 | 0.9104 | 0.9808 |
|
182 |
+
| 0.0051 | 0.43 | 43000 | 0.0049 | 0.9080 | 0.9060 | 0.9070 | 0.9805 |
|
183 |
+
| 0.0037 | 0.44 | 44000 | 0.0049 | 0.9328 | 0.8877 | 0.9097 | 0.9801 |
|
184 |
+
| 0.0041 | 0.45 | 45000 | 0.0049 | 0.9231 | 0.8975 | 0.9101 | 0.9813 |
|
185 |
+
| 0.0046 | 0.46 | 46000 | 0.0046 | 0.9308 | 0.8943 | 0.9122 | 0.9812 |
|
186 |
+
| 0.0038 | 0.47 | 47000 | 0.0047 | 0.9291 | 0.8969 | 0.9127 | 0.9815 |
|
187 |
+
| 0.0043 | 0.48 | 48000 | 0.0046 | 0.9308 | 0.8909 | 0.9104 | 0.9804 |
|
188 |
+
| 0.0043 | 0.49 | 49000 | 0.0046 | 0.9278 | 0.8954 | 0.9113 | 0.9800 |
|
189 |
+
| 0.0039 | 0.5 | 50000 | 0.0047 | 0.9173 | 0.9073 | 0.9123 | 0.9817 |
|
190 |
+
| 0.0043 | 0.51 | 51000 | 0.0045 | 0.9347 | 0.8962 | 0.9150 | 0.9821 |
|
191 |
+
| 0.0047 | 0.52 | 52000 | 0.0045 | 0.9266 | 0.9016 | 0.9139 | 0.9810 |
|
192 |
+
| 0.0035 | 0.53 | 53000 | 0.0046 | 0.9165 | 0.9122 | 0.9144 | 0.9820 |
|
193 |
+
| 0.0038 | 0.54 | 54000 | 0.0046 | 0.9231 | 0.9050 | 0.9139 | 0.9823 |
|
194 |
+
| 0.0036 | 0.55 | 55000 | 0.0046 | 0.9331 | 0.9005 | 0.9165 | 0.9828 |
|
195 |
+
| 0.0037 | 0.56 | 56000 | 0.0047 | 0.9246 | 0.9016 | 0.9129 | 0.9821 |
|
196 |
+
| 0.0035 | 0.57 | 57000 | 0.0044 | 0.9351 | 0.9003 | 0.9174 | 0.9829 |
|
197 |
+
| 0.0043 | 0.57 | 58000 | 0.0043 | 0.9257 | 0.9079 | 0.9167 | 0.9826 |
|
198 |
+
| 0.004 | 0.58 | 59000 | 0.0043 | 0.9286 | 0.9065 | 0.9174 | 0.9823 |
|
199 |
+
| 0.0041 | 0.59 | 60000 | 0.0044 | 0.9324 | 0.9050 | 0.9185 | 0.9825 |
|
200 |
+
| 0.0039 | 0.6 | 61000 | 0.0044 | 0.9268 | 0.9041 | 0.9153 | 0.9815 |
|
201 |
+
| 0.0038 | 0.61 | 62000 | 0.0043 | 0.9367 | 0.8918 | 0.9137 | 0.9819 |
|
202 |
+
| 0.0037 | 0.62 | 63000 | 0.0044 | 0.9249 | 0.9160 | 0.9205 | 0.9833 |
|
203 |
+
| 0.0036 | 0.63 | 64000 | 0.0043 | 0.9398 | 0.8975 | 0.9181 | 0.9827 |
|
204 |
+
| 0.0036 | 0.64 | 65000 | 0.0043 | 0.9260 | 0.9118 | 0.9188 | 0.9829 |
|
205 |
+
| 0.0035 | 0.65 | 66000 | 0.0044 | 0.9375 | 0.8988 | 0.9178 | 0.9828 |
|
206 |
+
| 0.0034 | 0.66 | 67000 | 0.0043 | 0.9272 | 0.9143 | 0.9207 | 0.9833 |
|
207 |
+
| 0.0033 | 0.67 | 68000 | 0.0044 | 0.9332 | 0.9024 | 0.9176 | 0.9827 |
|
208 |
+
| 0.0035 | 0.68 | 69000 | 0.0044 | 0.9396 | 0.8981 | 0.9184 | 0.9825 |
|
209 |
+
| 0.0038 | 0.69 | 70000 | 0.0042 | 0.9265 | 0.9163 | 0.9214 | 0.9827 |
|
210 |
+
| 0.0035 | 0.7 | 71000 | 0.0044 | 0.9375 | 0.9013 | 0.9191 | 0.9827 |
|
211 |
+
| 0.0037 | 0.71 | 72000 | 0.0042 | 0.9264 | 0.9171 | 0.9217 | 0.9830 |
|
212 |
+
| 0.0039 | 0.72 | 73000 | 0.0043 | 0.9399 | 0.9003 | 0.9197 | 0.9826 |
|
213 |
+
| 0.0039 | 0.73 | 74000 | 0.0041 | 0.9341 | 0.9094 | 0.9216 | 0.9832 |
|
214 |
+
| 0.0035 | 0.74 | 75000 | 0.0042 | 0.9301 | 0.9160 | 0.9230 | 0.9837 |
|
215 |
+
| 0.0037 | 0.75 | 76000 | 0.0042 | 0.9342 | 0.9107 | 0.9223 | 0.9835 |
|
216 |
+
| 0.0034 | 0.76 | 77000 | 0.0042 | 0.9331 | 0.9118 | 0.9223 | 0.9836 |
|
217 |
+
| 0.003 | 0.77 | 78000 | 0.0041 | 0.9330 | 0.9135 | 0.9231 | 0.9838 |
|
218 |
+
| 0.0034 | 0.78 | 79000 | 0.0041 | 0.9308 | 0.9082 | 0.9193 | 0.9832 |
|
219 |
+
| 0.0037 | 0.79 | 80000 | 0.0040 | 0.9346 | 0.9128 | 0.9236 | 0.9839 |
|
220 |
+
| 0.0032 | 0.8 | 81000 | 0.0041 | 0.9389 | 0.9128 | 0.9257 | 0.9841 |
|
221 |
+
| 0.0031 | 0.81 | 82000 | 0.0040 | 0.9293 | 0.9163 | 0.9227 | 0.9836 |
|
222 |
+
| 0.0032 | 0.82 | 83000 | 0.0041 | 0.9305 | 0.9160 | 0.9232 | 0.9835 |
|
223 |
+
| 0.0034 | 0.83 | 84000 | 0.0041 | 0.9327 | 0.9118 | 0.9221 | 0.9838 |
|
224 |
+
| 0.0028 | 0.84 | 85000 | 0.0041 | 0.9279 | 0.9216 | 0.9247 | 0.9839 |
|
225 |
+
| 0.0031 | 0.85 | 86000 | 0.0041 | 0.9326 | 0.9167 | 0.9246 | 0.9838 |
|
226 |
+
| 0.0029 | 0.86 | 87000 | 0.0040 | 0.9354 | 0.9158 | 0.9255 | 0.9841 |
|
227 |
+
| 0.0031 | 0.87 | 88000 | 0.0041 | 0.9327 | 0.9156 | 0.9241 | 0.9840 |
|
228 |
+
| 0.0033 | 0.88 | 89000 | 0.0040 | 0.9367 | 0.9141 | 0.9253 | 0.9846 |
|
229 |
+
| 0.0031 | 0.89 | 90000 | 0.0040 | 0.9379 | 0.9141 | 0.9259 | 0.9844 |
|
230 |
+
| 0.0031 | 0.9 | 91000 | 0.0040 | 0.9297 | 0.9184 | 0.9240 | 0.9843 |
|
231 |
+
| 0.0034 | 0.91 | 92000 | 0.0040 | 0.9299 | 0.9188 | 0.9243 | 0.9843 |
|
232 |
+
| 0.0036 | 0.92 | 93000 | 0.0039 | 0.9324 | 0.9175 | 0.9249 | 0.9843 |
|
233 |
+
| 0.0028 | 0.93 | 94000 | 0.0039 | 0.9399 | 0.9135 | 0.9265 | 0.9848 |
|
234 |
+
| 0.0029 | 0.94 | 95000 | 0.0040 | 0.9342 | 0.9173 | 0.9257 | 0.9845 |
|
235 |
+
| 0.003 | 0.95 | 96000 | 0.0040 | 0.9378 | 0.9184 | 0.9280 | 0.9850 |
|
236 |
+
| 0.0029 | 0.96 | 97000 | 0.0039 | 0.9380 | 0.9152 | 0.9264 | 0.9847 |
|
237 |
+
| 0.003 | 0.97 | 98000 | 0.0039 | 0.9372 | 0.9156 | 0.9263 | 0.9849 |
|
238 |
+
| 0.003 | 0.98 | 99000 | 0.0039 | 0.9387 | 0.9167 | 0.9276 | 0.9851 |
|
239 |
+
| 0.0031 | 0.99 | 100000 | 0.0039 | 0.9373 | 0.9177 | 0.9274 | 0.9849 |
|
240 |
+
|
241 |
+
### Framework versions
|
242 |
+
|
243 |
+
- SpanMarker 1.2.4
|
244 |
+
- Transformers 4.28.1
|
245 |
+
- Pytorch 1.13.1+cu117
|
246 |
+
- Datasets 2.12.0
|
247 |
+
- Tokenizers 0.13.2
|
248 |
+
|
249 |
+
## Contributions
|
250 |
+
Many thanks to [Simone Tedeschi](https://huggingface.co/sted97) from [Babelscape](https://babelscape.com) for his insight when training this model and his involvement in the creation of the training dataset.
|