File size: 1,647 Bytes
3f26801 f005c29 3f26801 f005c29 3f26801 f005c29 de6c8c8 f005c29 3f26801 f005c29 3f26801 f005c29 3f26801 dd740f6 f005c29 3f26801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
model-index:
- name: SpanMarker w. bert-base-cased on finegrained, supervised FewNERD by Tom Aarsen
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
type: DFKI-SLT/few-nerd
name: Finegrained FewNERD
config: supervised
split: test
revision: 2e3e727c63604fbfa2ff4cc5055359c84fe5ef2c
metrics:
- type: f1
value: 0.7053
name: F1
- type: precision
value: 0.7101
name: Precision
- type: recall
value: 0.7005
name: recall
---
# SpanMarker for Named Entity Recognition
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be usedfor Named Entity Recognition. In particular, this SpanMarker model uses [bert-base-cased](https://huggingface.co/bert-base-cased) as the underlying encoder.
## Usage
To use this model for inference, first install the `span_marker` library:
```bash
pip install span_marker
```
You can then run inference with this model like so:
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-fewnerd-fine-super")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library. |