tomaarsen HF staff commited on
Commit
e654448
·
verified ·
1 Parent(s): 8346ecf

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,773 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: distilbert/distilroberta-base
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: She was buried in Breda .
24
+ sentences:
25
+ - Anna was buried in Breda .
26
+ - Jackson Township is a township found in Will County , Illinois .
27
+ - Saint-Genis-Pouilly is a commune in the Ain department in eastern France .
28
+ - source_sentence: Have you never been mellow? No, I'm just a grumpy sumbitch
29
+ sentences:
30
+ - How many of you retards have ever had wooopi.? Not me... I'm saving myself...
31
+ - Has anyone heard of the marketing company Vector? If so what is the company about
32
+ and is it a good place to work?
33
+ - I want to make hearts on the computer too?!? How do i do it!!!!i tried doing alt
34
+ 3 but i couldn't see my heart!!!Is that normal!!
35
+ - source_sentence: Are there UFOs?
36
+ sentences:
37
+ - Who has seen aliens or UFOs?
38
+ - How do people become famous?
39
+ - How do I learn math?
40
+ - source_sentence: The dog runs.
41
+ sentences:
42
+ - A dog running.
43
+ - A man eats a sandwich.
44
+ - The people are sitting.
45
+ - source_sentence: guy on a bike
46
+ sentences:
47
+ - Man riding a bike
48
+ - A man cooks on a grill.
49
+ - The woman is indoors.
50
+ pipeline_tag: sentence-similarity
51
+ co2_eq_emissions:
52
+ emissions: 78.69029495412121
53
+ energy_consumed: 0.2024437614268031
54
+ source: codecarbon
55
+ training_type: fine-tuning
56
+ on_cloud: false
57
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
58
+ ram_total_size: 31.777088165283203
59
+ hours_used: 0.601
60
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
61
+ model-index:
62
+ - name: SentenceTransformer based on distilbert/distilroberta-base
63
+ results:
64
+ - task:
65
+ type: semantic-similarity
66
+ name: Semantic Similarity
67
+ dataset:
68
+ name: sts dev
69
+ type: sts-dev
70
+ metrics:
71
+ - type: pearson_cosine
72
+ value: 0.8415424335219892
73
+ name: Pearson Cosine
74
+ - type: spearman_cosine
75
+ value: 0.845236449663091
76
+ name: Spearman Cosine
77
+ - type: pearson_manhattan
78
+ value: 0.8502275215819475
79
+ name: Pearson Manhattan
80
+ - type: spearman_manhattan
81
+ value: 0.851659983857617
82
+ name: Spearman Manhattan
83
+ - type: pearson_euclidean
84
+ value: 0.8534543309306831
85
+ name: Pearson Euclidean
86
+ - type: spearman_euclidean
87
+ value: 0.8555429338051269
88
+ name: Spearman Euclidean
89
+ - type: pearson_dot
90
+ value: 0.6505488321872611
91
+ name: Pearson Dot
92
+ - type: spearman_dot
93
+ value: 0.6489555708500816
94
+ name: Spearman Dot
95
+ - type: pearson_max
96
+ value: 0.8534543309306831
97
+ name: Pearson Max
98
+ - type: spearman_max
99
+ value: 0.8555429338051269
100
+ name: Spearman Max
101
+ - task:
102
+ type: semantic-similarity
103
+ name: Semantic Similarity
104
+ dataset:
105
+ name: sts test
106
+ type: sts-test
107
+ metrics:
108
+ - type: pearson_cosine
109
+ value: 0.8105817065758533
110
+ name: Pearson Cosine
111
+ - type: spearman_cosine
112
+ value: 0.8144723448926713
113
+ name: Spearman Cosine
114
+ - type: pearson_manhattan
115
+ value: 0.8225264118038157
116
+ name: Pearson Manhattan
117
+ - type: spearman_manhattan
118
+ value: 0.8131121443026537
119
+ name: Spearman Manhattan
120
+ - type: pearson_euclidean
121
+ value: 0.825469313508584
122
+ name: Pearson Euclidean
123
+ - type: spearman_euclidean
124
+ value: 0.8164637881262432
125
+ name: Spearman Euclidean
126
+ - type: pearson_dot
127
+ value: 0.5910799174044387
128
+ name: Pearson Dot
129
+ - type: spearman_dot
130
+ value: 0.5760606722387962
131
+ name: Spearman Dot
132
+ - type: pearson_max
133
+ value: 0.825469313508584
134
+ name: Pearson Max
135
+ - type: spearman_max
136
+ value: 0.8164637881262432
137
+ name: Spearman Max
138
+ ---
139
+
140
+ # SentenceTransformer based on distilbert/distilroberta-base
141
+
142
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli), [sentence-compression](https://huggingface.co/datasets/sentence-transformers/sentence-compression), [simple-wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki), [altlex](https://huggingface.co/datasets/sentence-transformers/altlex), [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates), [coco-captions](https://huggingface.co/datasets/sentence-transformers/coco-captions), [flickr30k-captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions), [yahoo-answers](https://huggingface.co/datasets/sentence-transformers/yahoo-answers) and [stack-exchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
143
+
144
+ ## Model Details
145
+
146
+ ### Model Description
147
+ - **Model Type:** Sentence Transformer
148
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
149
+ - **Maximum Sequence Length:** 128 tokens
150
+ - **Output Dimensionality:** 768 tokens
151
+ - **Similarity Function:** Cosine Similarity
152
+ - **Training Datasets:**
153
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
154
+ - [sentence-compression](https://huggingface.co/datasets/sentence-transformers/sentence-compression)
155
+ - [simple-wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki)
156
+ - [altlex](https://huggingface.co/datasets/sentence-transformers/altlex)
157
+ - [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
158
+ - [coco-captions](https://huggingface.co/datasets/sentence-transformers/coco-captions)
159
+ - [flickr30k-captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions)
160
+ - [yahoo-answers](https://huggingface.co/datasets/sentence-transformers/yahoo-answers)
161
+ - [stack-exchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates)
162
+ - **Language:** en
163
+ <!-- - **License:** Unknown -->
164
+
165
+ ### Model Sources
166
+
167
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
168
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
169
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
170
+
171
+ ### Full Model Architecture
172
+
173
+ ```
174
+ SentenceTransformer(
175
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
176
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
177
+ )
178
+ ```
179
+
180
+ ## Usage
181
+
182
+ ### Direct Usage (Sentence Transformers)
183
+
184
+ First install the Sentence Transformers library:
185
+
186
+ ```bash
187
+ pip install -U sentence-transformers
188
+ ```
189
+
190
+ Then you can load this model and run inference.
191
+ ```python
192
+ from sentence_transformers import SentenceTransformer
193
+
194
+ # Download from the 🤗 Hub
195
+ model = SentenceTransformer("tomaarsen/distilroberta-base-paraphrases-multi")
196
+ # Run inference
197
+ sentences = [
198
+ 'guy on a bike',
199
+ 'Man riding a bike',
200
+ 'A man cooks on a grill.',
201
+ ]
202
+ embeddings = model.encode(sentences)
203
+ print(embeddings.shape)
204
+ # [3, 768]
205
+
206
+ # Get the similarity scores for the embeddings
207
+ similarities = model.similarity(embeddings)
208
+ print(similarities.shape)
209
+ # [3, 3]
210
+ ```
211
+
212
+ <!--
213
+ ### Direct Usage (Transformers)
214
+
215
+ <details><summary>Click to see the direct usage in Transformers</summary>
216
+
217
+ </details>
218
+ -->
219
+
220
+ <!--
221
+ ### Downstream Usage (Sentence Transformers)
222
+
223
+ You can finetune this model on your own dataset.
224
+
225
+ <details><summary>Click to expand</summary>
226
+
227
+ </details>
228
+ -->
229
+
230
+ <!--
231
+ ### Out-of-Scope Use
232
+
233
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
234
+ -->
235
+
236
+ ## Evaluation
237
+
238
+ ### Metrics
239
+
240
+ #### Semantic Similarity
241
+ * Dataset: `sts-dev`
242
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
243
+
244
+ | Metric | Value |
245
+ |:--------------------|:-----------|
246
+ | pearson_cosine | 0.8415 |
247
+ | **spearman_cosine** | **0.8452** |
248
+ | pearson_manhattan | 0.8502 |
249
+ | spearman_manhattan | 0.8517 |
250
+ | pearson_euclidean | 0.8535 |
251
+ | spearman_euclidean | 0.8555 |
252
+ | pearson_dot | 0.6505 |
253
+ | spearman_dot | 0.649 |
254
+ | pearson_max | 0.8535 |
255
+ | spearman_max | 0.8555 |
256
+
257
+ #### Semantic Similarity
258
+ * Dataset: `sts-test`
259
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
260
+
261
+ | Metric | Value |
262
+ |:--------------------|:-----------|
263
+ | pearson_cosine | 0.8106 |
264
+ | **spearman_cosine** | **0.8145** |
265
+ | pearson_manhattan | 0.8225 |
266
+ | spearman_manhattan | 0.8131 |
267
+ | pearson_euclidean | 0.8255 |
268
+ | spearman_euclidean | 0.8165 |
269
+ | pearson_dot | 0.5911 |
270
+ | spearman_dot | 0.5761 |
271
+ | pearson_max | 0.8255 |
272
+ | spearman_max | 0.8165 |
273
+
274
+ <!--
275
+ ## Bias, Risks and Limitations
276
+
277
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
278
+ -->
279
+
280
+ <!--
281
+ ### Recommendations
282
+
283
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
284
+ -->
285
+
286
+ ## Training Details
287
+
288
+ ### Training Datasets
289
+
290
+ #### all-nli
291
+
292
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [cc6c526](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/cc6c526380e29912b5c6fa03682da4daf773c013)
293
+ * Size: 557,850 training samples
294
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
295
+ * Approximate statistics based on the first 1000 samples:
296
+ | | anchor | positive | negative |
297
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
298
+ | type | string | string | string |
299
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
300
+ * Samples:
301
+ | anchor | positive | negative |
302
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
303
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
304
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
305
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
306
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
307
+ ```json
308
+ {
309
+ "scale": 20.0,
310
+ "similarity_fct": "cos_sim"
311
+ }
312
+ ```
313
+
314
+ #### sentence-compression
315
+
316
+ * Dataset: [sentence-compression](https://huggingface.co/datasets/sentence-transformers/sentence-compression) at [605bc91](https://huggingface.co/datasets/sentence-transformers/sentence-compression/tree/605bc91d95631895ba25b6eda51a3cb596976c90)
317
+ * Size: 180,000 training samples
318
+ * Columns: <code>text</code> and <code>simplified</code>
319
+ * Approximate statistics based on the first 1000 samples:
320
+ | | text | simplified |
321
+ |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
322
+ | type | string | string |
323
+ | details | <ul><li>min: 10 tokens</li><li>mean: 33.13 tokens</li><li>max: 126 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.13 tokens</li><li>max: 29 tokens</li></ul> |
324
+ * Samples:
325
+ | text | simplified |
326
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------|
327
+ | <code>The USHL completed an expansion draft on Monday as 10 players who were on the rosters of USHL teams during the 2009-10 season were selected by the League's two newest entries, the Muskegon Lumberjacks and Dubuque Fighting Saints.</code> | <code>USHL completes expansion draft</code> |
328
+ | <code>Major League Baseball Commissioner Bud Selig will be speaking at St. Norbert College next month.</code> | <code>Bud Selig to speak at St. Norbert College</code> |
329
+ | <code>It's fresh cherry time in Michigan and the best time to enjoy this delicious and nutritious fruit.</code> | <code>It's cherry time</code> |
330
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
331
+ ```json
332
+ {
333
+ "scale": 20.0,
334
+ "similarity_fct": "cos_sim"
335
+ }
336
+ ```
337
+
338
+ #### simple-wiki
339
+
340
+ * Dataset: [simple-wiki](https://huggingface.co/datasets/sentence-transformers/simple-wiki) at [60fd9b4](https://huggingface.co/datasets/sentence-transformers/simple-wiki/tree/60fd9b4680642ace0e2604cc2de44d376df419a7)
341
+ * Size: 102,225 training samples
342
+ * Columns: <code>text</code> and <code>simplified</code>
343
+ * Approximate statistics based on the first 1000 samples:
344
+ | | text | simplified |
345
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
346
+ | type | string | string |
347
+ | details | <ul><li>min: 9 tokens</li><li>mean: 35.19 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 29.1 tokens</li><li>max: 128 tokens</li></ul> |
348
+ * Samples:
349
+ | text | simplified |
350
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
351
+ | <code>The greatest example has been in his present job ( then , Minister for Foreign Affairs ) , where he has perforce concentrated on Anglo-Irish relations and , in particular the North ( i.e. , Northern Ireland ) .</code> | <code>The greatest example has been in his present job ( then , Minister for Foreign Affairs ) , where he has perforce concentrated on Anglo-Irish relations and , in particular Northern Ireland ( .</code> |
352
+ | <code>His reputation rose further when opposition leaders under parliamentary privilege alleged that Taoiseach Charles Haughey , who in January 1982 had been Leader of the Opposition , had not merely rung the President 's Office but threatened to end the career of the army officer who took the call and who , on Hillery 's explicit instructions , had refused to put through the call to the President .</code> | <code>President Hillery refused to speak to any opposition party politicians , but when Charles Haughey , who was Leader of the Opposition , had rang the President 's Office he threatened to end the career of the army officer answered and refused on Hillery 's explicit orders to put the call through to the President .</code> |
353
+ | <code>He considered returning to medicine , perhaps moving with his wife , Maeve ( also a doctor ) to Africa .</code> | <code>He thought about returning to medicine , perhaps moving with his wife , Maeve ( also a doctor ) to Africa .</code> |
354
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
355
+ ```json
356
+ {
357
+ "scale": 20.0,
358
+ "similarity_fct": "cos_sim"
359
+ }
360
+ ```
361
+
362
+ #### altlex
363
+
364
+ * Dataset: [altlex](https://huggingface.co/datasets/sentence-transformers/altlex) at [97eb209](https://huggingface.co/datasets/sentence-transformers/altlex/tree/97eb20963455c361d5a81c107c3596cff9e0cd82)
365
+ * Size: 112,696 training samples
366
+ * Columns: <code>text</code> and <code>simplified</code>
367
+ * Approximate statistics based on the first 1000 samples:
368
+ | | text | simplified |
369
+ |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
370
+ | type | string | string |
371
+ | details | <ul><li>min: 9 tokens</li><li>mean: 31.8 tokens</li><li>max: 121 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 26.49 tokens</li><li>max: 114 tokens</li></ul> |
372
+ * Samples:
373
+ | text | simplified |
374
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
375
+ | <code>A set of 31 guns , cast 1729-1749 by the first master founder at the Royal Foundry , later the Royal Arsenal , Woolwich , were used to fire salutes until 1907 , often for Queen Victoria , who was a frequent visitor .</code> | <code>A set of 31 guns , cast 1729-1749 by the first master founder at the Royal Foundry , later the Royal Arsenal , Woolwich , were used to fire salutes until 1907 , often for Queen Victoria who was a frequent visitor .</code> |
376
+ | <code>In 1929 , the building became vacant , and was given to Prince Edward , Prince of Wales , by his father , King George V . This became the Prince 's chief residence and was used extensively by him for entertaining and as a country retreat .</code> | <code>In 1929 , the building became vacant , and was given to Prince Edward , the Prince of Wales by his father , King George V . This became the Prince 's chief residence , and was used extensively by the Prince for entertaining and as a country retreat .</code> |
377
+ | <code>Additions included an octagon room in the north-east side , in which the King regularly had dinner .</code> | <code>Additions included an octagon room in the North-East side , where the King regularly had dinner .</code> |
378
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
379
+ ```json
380
+ {
381
+ "scale": 20.0,
382
+ "similarity_fct": "cos_sim"
383
+ }
384
+ ```
385
+
386
+ #### quora-duplicates
387
+
388
+ * Dataset: [quora-duplicates](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
389
+ * Size: 101,762 training samples
390
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
391
+ * Approximate statistics based on the first 1000 samples:
392
+ | | anchor | positive | negative |
393
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
394
+ | type | string | string | string |
395
+ | details | <ul><li>min: 6 tokens</li><li>mean: 13.72 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.5 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.56 tokens</li><li>max: 62 tokens</li></ul> |
396
+ * Samples:
397
+ | anchor | positive | negative |
398
+ |:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
399
+ | <code>Why in India do we not have one on one political debate as in USA?</code> | <code>Why cant we have a public debate between politicians in India like the one in US?</code> | <code>Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?</code> |
400
+ | <code>What is OnePlus One?</code> | <code>How is oneplus one?</code> | <code>Why is OnePlus One so good?</code> |
401
+ | <code>Does our mind control our emotions?</code> | <code>How do smart and successful people control their emotions?</code> | <code>How can I control my positive emotions for the people whom I love but they don't care about me?</code> |
402
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
403
+ ```json
404
+ {
405
+ "scale": 20.0,
406
+ "similarity_fct": "cos_sim"
407
+ }
408
+ ```
409
+
410
+ #### coco-captions
411
+
412
+ * Dataset: [coco-captions](https://huggingface.co/datasets/sentence-transformers/coco-captions) at [bd26018](https://huggingface.co/datasets/sentence-transformers/coco-captions/tree/bd2601822b9af9a41656d678ffbd5c80d81e276a)
413
+ * Size: 414,010 training samples
414
+ * Columns: <code>caption1</code> and <code>caption2</code>
415
+ * Approximate statistics based on the first 1000 samples:
416
+ | | caption1 | caption2 |
417
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
418
+ | type | string | string |
419
+ | details | <ul><li>min: 10 tokens</li><li>mean: 13.65 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 13.65 tokens</li><li>max: 25 tokens</li></ul> |
420
+ * Samples:
421
+ | caption1 | caption2 |
422
+ |:-------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------|
423
+ | <code>A clock that blends in with the wall hangs in a bathroom. </code> | <code>A very clean and well decorated empty bathroom</code> |
424
+ | <code>A very clean and well decorated empty bathroom</code> | <code>A bathroom with a border of butterflies and blue paint on the walls above it.</code> |
425
+ | <code>A bathroom with a border of butterflies and blue paint on the walls above it.</code> | <code>An angled view of a beautifully decorated bathroom.</code> |
426
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
427
+ ```json
428
+ {
429
+ "scale": 20.0,
430
+ "similarity_fct": "cos_sim"
431
+ }
432
+ ```
433
+
434
+ #### flickr30k-captions
435
+
436
+ * Dataset: [flickr30k-captions](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions) at [0ef0ce3](https://huggingface.co/datasets/sentence-transformers/flickr30k-captions/tree/0ef0ce31492fd8dc161ed483a40d3c4894f9a8c1)
437
+ * Size: 158,881 training samples
438
+ * Columns: <code>caption1</code> and <code>caption2</code>
439
+ * Approximate statistics based on the first 1000 samples:
440
+ | | caption1 | caption2 |
441
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
442
+ | type | string | string |
443
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.22 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 16.22 tokens</li><li>max: 60 tokens</li></ul> |
444
+ * Samples:
445
+ | caption1 | caption2 |
446
+ |:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
447
+ | <code>Two men in green shirts are standing in a yard.</code> | <code>Two young, White males are outside near many bushes.</code> |
448
+ | <code>Two young, White males are outside near many bushes.</code> | <code>Two young guys with shaggy hair look at their hands while hanging out in the yard.</code> |
449
+ | <code>Two young guys with shaggy hair look at their hands while hanging out in the yard.</code> | <code>A man in a blue shirt standing in a garden.</code> |
450
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
451
+ ```json
452
+ {
453
+ "scale": 20.0,
454
+ "similarity_fct": "cos_sim"
455
+ }
456
+ ```
457
+
458
+ #### yahoo-answers
459
+
460
+ * Dataset: [yahoo-answers](https://huggingface.co/datasets/sentence-transformers/yahoo-answers) at [93b3605](https://huggingface.co/datasets/sentence-transformers/yahoo-answers/tree/93b3605c508cf93e3666c9d3e34640b5fe62b507)
461
+ * Size: 599,417 training samples
462
+ * Columns: <code>question</code> and <code>answer</code>
463
+ * Approximate statistics based on the first 1000 samples:
464
+ | | question | answer |
465
+ |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
466
+ | type | string | string |
467
+ | details | <ul><li>min: 12 tokens</li><li>mean: 52.48 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 83.5 tokens</li><li>max: 128 tokens</li></ul> |
468
+ * Samples:
469
+ | question | answer |
470
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
471
+ | <code>why doesn't an optical mouse work on a glass table? or even on some surfaces?</code> | <code>why doesn't an optical mouse work on a glass table? Optical mice use an LED and a camera to rapidly capture images of the surface beneath the mouse. The infomation from the camera is analyzed by a DSP (Digital Signal Processor) and used to detect imperfections in the underlying surface and determine motion. Some materials, such as glass, mirrors or other very shiny, uniform surfaces interfere with the ability of the DSP to accurately analyze the surface beneath the mouse. \nSince glass is transparent and very uniform, the mouse is unable to pick up enough imperfections in the underlying surface to determine motion. Mirrored surfaces are also a problem, since they constantly reflect back the same image, causing the DSP not to recognize motion properly. When the system is unable to see surface changes associated with movement, the mouse will not work properly.</code> |
472
+ | <code>What is the best off-road motorcycle trail ? long-distance trail throughout CA</code> | <code>What is the best off-road motorcycle trail ? i hear that the mojave road is amazing!<br />\nsearch for it online.</code> |
473
+ | <code>What is Trans Fat? How to reduce that? I heard that tras fat is bad for the body. Why is that? Where can we find it in our daily food?</code> | <code>What is Trans Fat? How to reduce that? Trans fats occur in manufactured foods during the process of partial hydrogenation, when hydrogen gas is bubbled through vegetable oil to increase shelf life and stabilize the original polyunsatured oil. The resulting fat is similar to saturated fat, which raises "bad" LDL cholesterol and can lead to clogged arteries and heart disease. \nUntil very recently, food labels were not required to list trans fats, and this health risk remained hidden to consumers. In early July, FDA regulations changed, and food labels will soon begin identifying trans fat content in processed foods.</code> |
474
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
475
+ ```json
476
+ {
477
+ "scale": 20.0,
478
+ "similarity_fct": "cos_sim"
479
+ }
480
+ ```
481
+
482
+ #### stack-exchange
483
+
484
+ * Dataset: [stack-exchange](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates) at [1c9657a](https://huggingface.co/datasets/sentence-transformers/stackexchange-duplicates/tree/1c9657aec12d9e101667bb9593efcc623c4a68ff)
485
+ * Size: 304,525 training samples
486
+ * Columns: <code>title1</code> and <code>title2</code>
487
+ * Approximate statistics based on the first 1000 samples:
488
+ | | title1 | title2 |
489
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
490
+ | type | string | string |
491
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.04 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 15.91 tokens</li><li>max: 80 tokens</li></ul> |
492
+ * Samples:
493
+ | title1 | title2 |
494
+ |:----------------------------------------------------------------------------------|:-------------------------------------------------------------|
495
+ | <code>what is the advantage of using the GPU rendering options in Android?</code> | <code>Can anyone explain all these Developer Options?</code> |
496
+ | <code>Blank video when converting uncompressed AVI files with ffmpeg</code> | <code>FFmpeg lossy compression problems</code> |
497
+ | <code>URL Rewriting of a query string in php</code> | <code>How to create friendly URL in php?</code> |
498
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
499
+ ```json
500
+ {
501
+ "scale": 20.0,
502
+ "similarity_fct": "cos_sim"
503
+ }
504
+ ```
505
+
506
+ ### Training Hyperparameters
507
+ #### Non-Default Hyperparameters
508
+
509
+ - `eval_strategy`: steps
510
+ - `per_device_train_batch_size`: 128
511
+ - `per_device_eval_batch_size`: 128
512
+ - `num_train_epochs`: 1
513
+ - `warmup_ratio`: 0.1
514
+ - `fp16`: True
515
+ - `batch_sampler`: no_duplicates
516
+ - `multi_dataset_batch_sampler`: round_robin
517
+
518
+ #### All Hyperparameters
519
+ <details><summary>Click to expand</summary>
520
+
521
+ - `overwrite_output_dir`: False
522
+ - `do_predict`: False
523
+ - `eval_strategy`: steps
524
+ - `prediction_loss_only`: False
525
+ - `per_device_train_batch_size`: 128
526
+ - `per_device_eval_batch_size`: 128
527
+ - `per_gpu_train_batch_size`: None
528
+ - `per_gpu_eval_batch_size`: None
529
+ - `gradient_accumulation_steps`: 1
530
+ - `eval_accumulation_steps`: None
531
+ - `learning_rate`: 5e-05
532
+ - `weight_decay`: 0.0
533
+ - `adam_beta1`: 0.9
534
+ - `adam_beta2`: 0.999
535
+ - `adam_epsilon`: 1e-08
536
+ - `max_grad_norm`: 1.0
537
+ - `num_train_epochs`: 1
538
+ - `max_steps`: -1
539
+ - `lr_scheduler_type`: linear
540
+ - `lr_scheduler_kwargs`: {}
541
+ - `warmup_ratio`: 0.1
542
+ - `warmup_steps`: 0
543
+ - `log_level`: passive
544
+ - `log_level_replica`: warning
545
+ - `log_on_each_node`: True
546
+ - `logging_nan_inf_filter`: True
547
+ - `save_safetensors`: True
548
+ - `save_on_each_node`: False
549
+ - `save_only_model`: False
550
+ - `no_cuda`: False
551
+ - `use_cpu`: False
552
+ - `use_mps_device`: False
553
+ - `seed`: 42
554
+ - `data_seed`: None
555
+ - `jit_mode_eval`: False
556
+ - `use_ipex`: False
557
+ - `bf16`: False
558
+ - `fp16`: True
559
+ - `fp16_opt_level`: O1
560
+ - `half_precision_backend`: auto
561
+ - `bf16_full_eval`: False
562
+ - `fp16_full_eval`: False
563
+ - `tf32`: None
564
+ - `local_rank`: 0
565
+ - `ddp_backend`: None
566
+ - `tpu_num_cores`: None
567
+ - `tpu_metrics_debug`: False
568
+ - `debug`: []
569
+ - `dataloader_drop_last`: False
570
+ - `dataloader_num_workers`: 0
571
+ - `dataloader_prefetch_factor`: None
572
+ - `past_index`: -1
573
+ - `disable_tqdm`: False
574
+ - `remove_unused_columns`: True
575
+ - `label_names`: None
576
+ - `load_best_model_at_end`: False
577
+ - `ignore_data_skip`: False
578
+ - `fsdp`: []
579
+ - `fsdp_min_num_params`: 0
580
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
581
+ - `fsdp_transformer_layer_cls_to_wrap`: None
582
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
583
+ - `deepspeed`: None
584
+ - `label_smoothing_factor`: 0.0
585
+ - `optim`: adamw_torch
586
+ - `optim_args`: None
587
+ - `adafactor`: False
588
+ - `group_by_length`: False
589
+ - `length_column_name`: length
590
+ - `ddp_find_unused_parameters`: None
591
+ - `ddp_bucket_cap_mb`: None
592
+ - `ddp_broadcast_buffers`: None
593
+ - `dataloader_pin_memory`: True
594
+ - `dataloader_persistent_workers`: False
595
+ - `skip_memory_metrics`: True
596
+ - `use_legacy_prediction_loop`: False
597
+ - `push_to_hub`: False
598
+ - `resume_from_checkpoint`: None
599
+ - `hub_model_id`: None
600
+ - `hub_strategy`: every_save
601
+ - `hub_private_repo`: False
602
+ - `hub_always_push`: False
603
+ - `gradient_checkpointing`: False
604
+ - `gradient_checkpointing_kwargs`: None
605
+ - `include_inputs_for_metrics`: False
606
+ - `eval_do_concat_batches`: True
607
+ - `fp16_backend`: auto
608
+ - `push_to_hub_model_id`: None
609
+ - `push_to_hub_organization`: None
610
+ - `mp_parameters`:
611
+ - `auto_find_batch_size`: False
612
+ - `full_determinism`: False
613
+ - `torchdynamo`: None
614
+ - `ray_scope`: last
615
+ - `ddp_timeout`: 1800
616
+ - `torch_compile`: False
617
+ - `torch_compile_backend`: None
618
+ - `torch_compile_mode`: None
619
+ - `dispatch_batches`: None
620
+ - `split_batches`: None
621
+ - `include_tokens_per_second`: False
622
+ - `include_num_input_tokens_seen`: False
623
+ - `neftune_noise_alpha`: None
624
+ - `optim_target_modules`: None
625
+ - `batch_sampler`: no_duplicates
626
+ - `multi_dataset_batch_sampler`: round_robin
627
+
628
+ </details>
629
+
630
+ ### Training Logs
631
+ | Epoch | Step | Training Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine |
632
+ |:------:|:----:|:-------------:|:-----------------------:|:------------------------:|
633
+ | 0.0140 | 100 | 3.739 | - | - |
634
+ | 0.0279 | 200 | 1.1317 | - | - |
635
+ | 0.0419 | 300 | 0.9645 | - | - |
636
+ | 0.0558 | 400 | 0.9053 | - | - |
637
+ | 0.0698 | 500 | 0.8889 | - | - |
638
+ | 0.0838 | 600 | 0.8741 | - | - |
639
+ | 0.0977 | 700 | 0.8329 | - | - |
640
+ | 0.1117 | 800 | 0.8331 | - | - |
641
+ | 0.1256 | 900 | 0.8241 | - | - |
642
+ | 0.1396 | 1000 | 0.7829 | 0.8460 | - |
643
+ | 0.1535 | 1100 | 0.7871 | - | - |
644
+ | 0.1675 | 1200 | 0.7521 | - | - |
645
+ | 0.1815 | 1300 | 0.7905 | - | - |
646
+ | 0.1954 | 1400 | 0.7531 | - | - |
647
+ | 0.2094 | 1500 | 0.7677 | - | - |
648
+ | 0.2233 | 1600 | 0.7745 | - | - |
649
+ | 0.2373 | 1700 | 0.7651 | - | - |
650
+ | 0.2513 | 1800 | 0.7712 | - | - |
651
+ | 0.2652 | 1900 | 0.7476 | - | - |
652
+ | 0.2792 | 2000 | 0.7814 | 0.8370 | - |
653
+ | 0.2931 | 2100 | 0.7536 | - | - |
654
+ | 0.3071 | 2200 | 0.7689 | - | - |
655
+ | 0.3210 | 2300 | 0.7656 | - | - |
656
+ | 0.3350 | 2400 | 0.7672 | - | - |
657
+ | 0.3490 | 2500 | 0.6921 | - | - |
658
+ | 0.3629 | 2600 | 0.6778 | - | - |
659
+ | 0.3769 | 2700 | 0.6844 | - | - |
660
+ | 0.3908 | 2800 | 0.6907 | - | - |
661
+ | 0.4048 | 2900 | 0.6881 | - | - |
662
+ | 0.4188 | 3000 | 0.6815 | 0.8372 | - |
663
+ | 0.4327 | 3100 | 0.6869 | - | - |
664
+ | 0.4467 | 3200 | 0.698 | - | - |
665
+ | 0.4606 | 3300 | 0.6868 | - | - |
666
+ | 0.4746 | 3400 | 0.7174 | - | - |
667
+ | 0.4886 | 3500 | 0.6714 | - | - |
668
+ | 0.5025 | 3600 | 0.6698 | - | - |
669
+ | 0.5165 | 3700 | 0.6838 | - | - |
670
+ | 0.5304 | 3800 | 0.6927 | - | - |
671
+ | 0.5444 | 3900 | 0.6628 | - | - |
672
+ | 0.5583 | 4000 | 0.6647 | 0.8367 | - |
673
+ | 0.5723 | 4100 | 0.6766 | - | - |
674
+ | 0.5863 | 4200 | 0.6987 | - | - |
675
+ | 0.6002 | 4300 | 0.6895 | - | - |
676
+ | 0.6142 | 4400 | 0.6571 | - | - |
677
+ | 0.6281 | 4500 | 0.66 | - | - |
678
+ | 0.6421 | 4600 | 0.6747 | - | - |
679
+ | 0.6561 | 4700 | 0.6495 | - | - |
680
+ | 0.6700 | 4800 | 0.6746 | - | - |
681
+ | 0.6840 | 4900 | 0.6575 | - | - |
682
+ | 0.6979 | 5000 | 0.6712 | 0.8454 | - |
683
+ | 0.7119 | 5100 | 0.6627 | - | - |
684
+ | 0.7259 | 5200 | 0.6538 | - | - |
685
+ | 0.7398 | 5300 | 0.6659 | - | - |
686
+ | 0.7538 | 5400 | 0.6551 | - | - |
687
+ | 0.7677 | 5500 | 0.6548 | - | - |
688
+ | 0.7817 | 5600 | 0.673 | - | - |
689
+ | 0.7956 | 5700 | 0.6805 | - | - |
690
+ | 0.8096 | 5800 | 0.6537 | - | - |
691
+ | 0.8236 | 5900 | 0.6826 | - | - |
692
+ | 0.8375 | 6000 | 0.7182 | 0.8370 | - |
693
+ | 0.8515 | 6100 | 0.7391 | - | - |
694
+ | 0.8654 | 6200 | 0.7006 | - | - |
695
+ | 0.8794 | 6300 | 0.6774 | - | - |
696
+ | 0.8934 | 6400 | 0.7076 | - | - |
697
+ | 0.9073 | 6500 | 0.6893 | - | - |
698
+ | 0.9213 | 6600 | 0.678 | - | - |
699
+ | 0.9352 | 6700 | 0.6703 | - | - |
700
+ | 0.9492 | 6800 | 0.675 | - | - |
701
+ | 0.9631 | 6900 | 0.6842 | - | - |
702
+ | 0.9771 | 7000 | 0.6909 | 0.8452 | - |
703
+ | 0.9911 | 7100 | 0.681 | - | - |
704
+ | 1.0 | 7164 | - | - | 0.8145 |
705
+
706
+
707
+ ### Environmental Impact
708
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
709
+ - **Energy Consumed**: 0.202 kWh
710
+ - **Carbon Emitted**: 0.079 kg of CO2
711
+ - **Hours Used**: 0.601 hours
712
+
713
+ ### Training Hardware
714
+ - **On Cloud**: No
715
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
716
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
717
+ - **RAM Size**: 31.78 GB
718
+
719
+ ### Framework Versions
720
+ - Python: 3.11.6
721
+ - Sentence Transformers: 3.0.0.dev0
722
+ - Transformers: 4.41.0.dev0
723
+ - PyTorch: 2.3.0+cu121
724
+ - Accelerate: 0.26.1
725
+ - Datasets: 2.18.0
726
+ - Tokenizers: 0.19.1
727
+
728
+ ## Citation
729
+
730
+ ### BibTeX
731
+
732
+ #### Sentence Transformers
733
+ ```bibtex
734
+ @inproceedings{reimers-2019-sentence-bert,
735
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
736
+ author = "Reimers, Nils and Gurevych, Iryna",
737
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
738
+ month = "11",
739
+ year = "2019",
740
+ publisher = "Association for Computational Linguistics",
741
+ url = "https://arxiv.org/abs/1908.10084",
742
+ }
743
+ ```
744
+
745
+ #### MultipleNegativesRankingLoss
746
+ ```bibtex
747
+ @misc{henderson2017efficient,
748
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
749
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
750
+ year={2017},
751
+ eprint={1705.00652},
752
+ archivePrefix={arXiv},
753
+ primaryClass={cs.CL}
754
+ }
755
+ ```
756
+
757
+ <!--
758
+ ## Glossary
759
+
760
+ *Clearly define terms in order to be accessible across audiences.*
761
+ -->
762
+
763
+ <!--
764
+ ## Model Card Authors
765
+
766
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
767
+ -->
768
+
769
+ <!--
770
+ ## Model Card Contact
771
+
772
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
773
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44e667a0b8fa890b166f64d5b986836cd53f82d9daba2406b2cbab3ddc1cc97d
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff