Create custom_model.py
Browse files- custom_model.py +35 -0
custom_model.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# custom_model.py
|
| 2 |
+
|
| 3 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
class CustomConfig(PretrainedConfig):
|
| 8 |
+
model_type = "custom_model"
|
| 9 |
+
|
| 10 |
+
def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, num_labels=2, **kwargs):
|
| 11 |
+
super().__init__(**kwargs)
|
| 12 |
+
self.vocab_size = vocab_size
|
| 13 |
+
self.hidden_size = hidden_size
|
| 14 |
+
self.num_hidden_layers = num_hidden_layers
|
| 15 |
+
self.num_attention_heads = num_attention_heads
|
| 16 |
+
self.num_labels = num_labels
|
| 17 |
+
|
| 18 |
+
class CustomModel(PreTrainedModel):
|
| 19 |
+
config_class = CustomConfig
|
| 20 |
+
|
| 21 |
+
def __init__(self, config):
|
| 22 |
+
super().__init__(config)
|
| 23 |
+
self.embedding = nn.Embedding(config.vocab_size, config.hidden_size)
|
| 24 |
+
self.layers = nn.ModuleList([nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) for _ in range(config.num_hidden_layers)])
|
| 25 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 26 |
+
|
| 27 |
+
self.init_weights()
|
| 28 |
+
|
| 29 |
+
def forward(self, input_ids):
|
| 30 |
+
embeddings = self.embedding(input_ids)
|
| 31 |
+
x = embeddings
|
| 32 |
+
for layer in self.layers:
|
| 33 |
+
x = layer(x)
|
| 34 |
+
logits = self.classifier(x.mean(dim=1)) # Example: taking the mean of the output as input to the classifier
|
| 35 |
+
return logits
|