--- base_model: Fsoft-AIC/videberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videberta-base_1024 results: [] --- # videberta-base_1024 This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5931 - Accuracy: 0.75 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.18 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5982 | 0.1 | 50 | 0.6297 | 0.75 | | 0.5505 | 0.21 | 100 | 0.5696 | 0.75 | | 0.5838 | 0.31 | 150 | 0.5629 | 0.75 | | 0.5925 | 0.41 | 200 | 0.5931 | 0.75 | | 0.7003 | 0.52 | 250 | 0.5931 | 0.75 | | 0.606 | 0.62 | 300 | 0.5931 | 0.75 | | 0.6744 | 0.72 | 350 | 0.5931 | 0.75 | | 0.6448 | 0.83 | 400 | 0.5931 | 0.75 | | 0.7365 | 0.93 | 450 | 0.5931 | 0.75 | | 0.6083 | 1.03 | 500 | 0.5931 | 0.75 | | 0.6217 | 1.14 | 550 | 0.5931 | 0.75 | | 0.642 | 1.24 | 600 | 0.5931 | 0.75 | | 0.6433 | 1.34 | 650 | 0.5931 | 0.75 | | 0.7497 | 1.45 | 700 | 0.5931 | 0.75 | | 0.6385 | 1.55 | 750 | 0.5931 | 0.75 | | 0.6581 | 1.65 | 800 | 0.5931 | 0.75 | | 0.6201 | 1.76 | 850 | 0.5931 | 0.75 | | 0.6424 | 1.86 | 900 | 0.5931 | 0.75 | | 0.619 | 1.96 | 950 | 0.5931 | 0.75 | | 0.6807 | 2.07 | 1000 | 0.5931 | 0.75 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.14.1