tjscollins
commited on
Commit
·
ac26bbe
1
Parent(s):
0597001
Model after coordinate descent hyperparameter search
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +97 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 287.12 +/- 20.40
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24a2e714d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24a2e71560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24a2e715f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24a2e71680>", "_build": "<function ActorCriticPolicy._build at 0x7f24a2e71710>", "forward": "<function ActorCriticPolicy.forward at 0x7f24a2e717a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24a2e71830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24a2e718c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24a2e71950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24a2e719e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24a2e71a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f24a2eba840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652201870.5410376, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCGQBfAAUAFMAlE5HP1BiTdLxqfyGlCmMAWGUhZSMHjxpcHl0aG9uLWlucHV0LTctOWU4MWY1NWI0MDdhPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCGQBfAAUAFMAlE5HP1BiTdLxqfyGlCmMAWGUhZSMHjxpcHl0aG9uLWlucHV0LTctOWU4MWY1NWI0MDdhPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMvBz56oi0+c5zUvvw8Hb95udu8PqdBvgAAAAAAAAAAZtHLvHvsm7oy3Ik5tvqFNNnZ+jq6Jp+4AACAPwAAgD8NNUa+jwOVPyYCo74fdU6/kDwgvzp1SL0AAAAAAAAAAM3erjzKD7s/8j/APcJONr6YrAG9tk8kvAAAAAAAAAAAZoA+PEMaU7xedvW9S2RDPAK7tz2oyyK9AACAPwAAgD+ApZo9+jKjP3IUIj/Q1i6/mwSpPHJ6eT4AAAAAAAAAAO3pJb4I92c/0NFdvnVPUr+Gd+u+Ly+LPAAAAAAAAAAA2j/SvfoFFD41vuM+ad4Lv/KH4T2jp1c+AAAAAAAAAAAAegg+svi0Pzqb2z5N6bC+1WHWPh3OAD8AAAAAAAAAABpsDz1Ff7E/PwqKPnewcr5yzrA8grzwPQAAAAAAAAAAZp3fvaCqgz4/wjI+qRIiv442FL61MlI+AAAAAAAAAACag9w8qHu6P5SaCz4TxZO9oMTyuzrn9j0AAAAAAAAAAIaWOD5s3ag/nY7ZPoCAIb+5Vhk/aCRQPgAAAAAAAAAAmqH5uwV5r7tDy3k7IfC3PIk4Hj1a75m9AACAPwAAgD96Rg0+lYkTP3/rwLxyI2W/nU98Pg1z+70AAAAAAAAAAICTTr3zFw0/yvkAPLPVcL/5K9a9ODuVPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIscBXdCswcUCUhpRSlIwBbJRLoYwBdJRHQMhC9dDhLoR1fZQoaAZoCWgPQwiOO6WDdaZwQJSGlFKUaBVLm2gWR0DIVBv4/NaAdX2UKGgGaAloD0MIZRcMrvl+ckCUhpRSlGgVS5JoFkdAyFQdVhkRSXV9lChoBmgJaA9DCC9pjNYRuHNAlIaUUpRoFUu8aBZHQMhUHdnCfpV1fZQoaAZoCWgPQwhtqBjnb/hwQJSGlFKUaBVLpGgWR0DIVCRsyi22dX2UKGgGaAloD0MIQ/8EFyvGc0CUhpRSlGgVS7hoFkdAyFQkUfPom3V9lChoBmgJaA9DCOTziqdeAXBAlIaUUpRoFUueaBZHQMhUNFS88Ld1fZQoaAZoCWgPQwj0+/7NSzlyQJSGlFKUaBVLqGgWR0DIVDzExZdOdX2UKGgGaAloD0MITkUqjO2bckCUhpRSlGgVS5NoFkdAyFQ/sWO6unV9lChoBmgJaA9DCPzgfOoYS3FAlIaUUpRoFUulaBZHQMhUQblaKUF1fZQoaAZoCWgPQwghAaPLG/JyQJSGlFKUaBVLuWgWR0DIVEUp1A7gdX2UKGgGaAloD0MItmYrL3l8c0CUhpRSlGgVS61oFkdAyFRJM1TBInV9lChoBmgJaA9DCKvQQCybkHJAlIaUUpRoFUusaBZHQMhUUDzZpSJ1fZQoaAZoCWgPQwiV1t8SwK1yQJSGlFKUaBVLwGgWR0DIVGpiI+GHdX2UKGgGaAloD0MIDD7NyUsfc0CUhpRSlGgVS+RoFkdAyFRqXSBsh3V9lChoBmgJaA9DCLbZWIn5FnNAlIaUUpRoFUugaBZHQMhUecT8HfN1fZQoaAZoCWgPQwix3T1A98tzQJSGlFKUaBVLxWgWR0DIVH/lnyuqdX2UKGgGaAloD0MIU0Da/0DZckCUhpRSlGgVS7poFkdAyFSCQ0XP7nV9lChoBmgJaA9DCCNJEK4AFnNAlIaUUpRoFUupaBZHQMhUgkRzzVd1fZQoaAZoCWgPQwiXqx+bZPRzQJSGlFKUaBVLs2gWR0DIVI9bzK9xdX2UKGgGaAloD0MIHNKowEkLckCUhpRSlGgVS7ZoFkdAyFSQ8r7O3XV9lChoBmgJaA9DCNGt1/RgOXRAlIaUUpRoFUvJaBZHQMhUlAyVObl1fZQoaAZoCWgPQwhjCWtjbKFyQJSGlFKUaBVLhmgWR0DIVJs6RyOrdX2UKGgGaAloD0MIQPZ690dQcUCUhpRSlGgVS61oFkdAyFScce8wpXV9lChoBmgJaA9DCB7+mqxRa3JAlIaUUpRoFUuvaBZHQMhUqoHC4z91fZQoaAZoCWgPQwg6XKs97GZzQJSGlFKUaBVLwmgWR0DIVLBQpF1CdX2UKGgGaAloD0MINSkF3V7Pc0CUhpRSlGgVS79oFkdAyFSxns9jgHV9lChoBmgJaA9DCFUuVP61xnNAlIaUUpRoFUvBaBZHQMhUwmm+Cbt1fZQoaAZoCWgPQwiR1hh0QpNwQJSGlFKUaBVLnGgWR0DIVMSed07sdX2UKGgGaAloD0MIxAYLJ+lcc0CUhpRSlGgVS5xoFkdAyFTEdIXj2nV9lChoBmgJaA9DCKlqgqj7snFAlIaUUpRoFUuWaBZHQMhUzvppvgp1fZQoaAZoCWgPQwgMPs3Jy6VzQJSGlFKUaBVL72gWR0DIVNKW1MM7dX2UKGgGaAloD0MImKPH761ocUCUhpRSlGgVS5ZoFkdAyFTUAG0NSnV9lChoBmgJaA9DCGxDxTi/D3NAlIaUUpRoFUugaBZHQMhU2mShakh1fZQoaAZoCWgPQwhvSnmtxHhxQJSGlFKUaBVLt2gWR0DIVOZ59mYjdX2UKGgGaAloD0MIVRNE3ce6cECUhpRSlGgVS5loFkdAyFTnPtUn5XV9lChoBmgJaA9DCLqe6LrwyHFAlIaUUpRoFUumaBZHQMhU6ygXdj51fZQoaAZoCWgPQwhMHHkgsupyQJSGlFKUaBVLnGgWR0DIVPGUY8+zdX2UKGgGaAloD0MISWdg5CVkc0CUhpRSlGgVS7doFkdAyFTyzBRAKXV9lChoBmgJaA9DCG5Q+62d7HJAlIaUUpRoFUu8aBZHQMhVAkzoEB91fZQoaAZoCWgPQwjPFaWEILpyQJSGlFKUaBVLkmgWR0DIVQITCcgAdX2UKGgGaAloD0MIQpdw6K0ncUCUhpRSlGgVS5toFkdAyFUFo6CDmXV9lChoBmgJaA9DCNHLKJabe3JAlIaUUpRoFUu9aBZHQMhVEfZElVt1fZQoaAZoCWgPQwhW0opv6AlxQJSGlFKUaBVLfmgWR0DIVRWnyd4FdX2UKGgGaAloD0MIP/1nzc8zcUCUhpRSlGgVS6FoFkdAyFUZ70nPV3V9lChoBmgJaA9DCIoFvqJbi3FAlIaUUpRoFUuGaBZHQMhVG24d6s11fZQoaAZoCWgPQwjYn8TnDi9xQJSGlFKUaBVLlWgWR0DIVR6MNtqIdX2UKGgGaAloD0MIXAGFejrhcUCUhpRSlGgVS6xoFkdAyFUhoJzDGnV9lChoBmgJaA9DCIUKDi8I0XJAlIaUUpRoFUu0aBZHQMhVJfVy3kR1fZQoaAZoCWgPQwjZI9QMKT1yQJSGlFKUaBVLi2gWR0DIVTSpR4yHdX2UKGgGaAloD0MIyorh6sDScECUhpRSlGgVS59oFkdAyFU67ROUMXV9lChoBmgJaA9DCFG+oIXEbHNAlIaUUpRoFUu+aBZHQMhVPy0a6z51fZQoaAZoCWgPQwh4gCctHO5zQJSGlFKUaBVLrWgWR0DIVUMvAXVLdX2UKGgGaAloD0MI3eukvmxUc0CUhpRSlGgVS6BoFkdAyFVGhQFcIXV9lChoBmgJaA9DCHHiqx1FzXJAlIaUUpRoFUuSaBZHQMhVT+RPoFF1fZQoaAZoCWgPQwhXlX1XRIlyQJSGlFKUaBVLrmgWR0DIVV/a+N96dX2UKGgGaAloD0MIho+IKVEwdECUhpRSlGgVS8loFkdAyFVfsOXmeXV9lChoBmgJaA9DCI0KnGyDxXNAlIaUUpRoFUu9aBZHQMhVbCwjdHl1fZQoaAZoCWgPQwjLEMe6OMNwQJSGlFKUaBVLp2gWR0DIVXV7ngYQdX2UKGgGaAloD0MI+fNtwRLOc0CUhpRSlGgVS8BoFkdAyFV6zeoDPnV9lChoBmgJaA9DCL+36c9+jHJAlIaUUpRoFUu0aBZHQMhVffgrH2h1fZQoaAZoCWgPQwg0u+6tSHhzQJSGlFKUaBVLxGgWR0DIVYEJa7mMdX2UKGgGaAloD0MIZeCAlq7+ckCUhpRSlGgVS7hoFkdAyFWDeYUnHHV9lChoBmgJaA9DCINNnUcFF3JAlIaUUpRoFUuraBZHQMhVhCrcTJ11fZQoaAZoCWgPQwh+iuPAq/dxQJSGlFKUaBVLtWgWR0DIVYT1K5CodX2UKGgGaAloD0MIpTFaR5V3c0CUhpRSlGgVS6FoFkdAyFWT0UXYUXV9lChoBmgJaA9DCN83vvaMoHNAlIaUUpRoFUu+aBZHQMhVnS4FzMl1fZQoaAZoCWgPQwgdO6jEtRZ0QJSGlFKUaBVLsmgWR0DIVaFhb4ahdX2UKGgGaAloD0MIbojxmhe7ckCUhpRSlGgVS6xoFkdAyFWlid8Rc3V9lChoBmgJaA9DCCmV8IReJ3BAlIaUUpRoFUueaBZHQMhVpjaoMrp1fZQoaAZoCWgPQwjZJ4BiJO5yQJSGlFKUaBVLkmgWR0DIVa6NyYG/dX2UKGgGaAloD0MI7C+7Jw/Wc0CUhpRSlGgVS8RoFkdAyFWumnfl63V9lChoBmgJaA9DCHuEmiHVSnBAlIaUUpRoFUueaBZHQMhVvuavzOJ1fZQoaAZoCWgPQwiA7suZbQtxQJSGlFKUaBVLk2gWR0DIVcITqSowdX2UKGgGaAloD0MI0GIpkm/gcUCUhpRSlGgVS7poFkdAyFXCXu3MIXV9lChoBmgJaA9DCIDXZ8563XFAlIaUUpRoFUuVaBZHQMhV02Xsw+N1fZQoaAZoCWgPQwg2I4PcRexAQJSGlFKUaBVLaGgWR0DIVdSAe7tidX2UKGgGaAloD0MICTiEKrVUcECUhpRSlGgVS6ZoFkdAyFXY8DB/JHV9lChoBmgJaA9DCPjFpSot/HNAlIaUUpRoFUu0aBZHQMhV2p1q33J1fZQoaAZoCWgPQwgGLSRgtEtxQJSGlFKUaBVLq2gWR0DIVd6K1og3dX2UKGgGaAloD0MIHVVNEHU1ckCUhpRSlGgVS7RoFkdAyFXj+RYA83V9lChoBmgJaA9DCL5KPnaXa3RAlIaUUpRoFUvHaBZHQMhV6FLeyiV1fZQoaAZoCWgPQwgqN1FLM8BzQJSGlFKUaBVLoWgWR0DIVep3xFy8dX2UKGgGaAloD0MIaAOwAZF1cECUhpRSlGgVS6FoFkdAyFX6+QlrunV9lChoBmgJaA9DCEAwR48fAHJAlIaUUpRoFUuUaBZHQMhV/ZGSZBt1fZQoaAZoCWgPQwiiKqbSj1hxQJSGlFKUaBVLpGgWR0DIVgZaTwDvdX2UKGgGaAloD0MIe2ZJgFooc0CUhpRSlGgVS81oFkdAyFYPLRKHwnV9lChoBmgJaA9DCDMyyF0EyHNAlIaUUpRoFUvEaBZHQMhWDxk/bCd1fZQoaAZoCWgPQwgSo+cWuuRyQJSGlFKUaBVLk2gWR0DIVhKbvw3HdX2UKGgGaAloD0MIs5quJ3occ0CUhpRSlGgVS4hoFkdAyFYdl3hXKnV9lChoBmgJaA9DCFBUNqypkHNAlIaUUpRoFUuvaBZHQMhWIW8yvcJ1fZQoaAZoCWgPQwh/3H75JGx0QJSGlFKUaBVLt2gWR0DIViJZOi35dX2UKGgGaAloD0MI2LrUCL1zcUCUhpRSlGgVS5xoFkdAyFYrcCYCyXV9lChoBmgJaA9DCPTCnQujD3JAlIaUUpRoFUuLaBZHQMhWLONYKY11fZQoaAZoCWgPQwjHoBNCx29yQJSGlFKUaBVLrmgWR0DIVi+f29L6dX2UKGgGaAloD0MIn8iTpOvDcUCUhpRSlGgVS5hoFkdAyFY3Q3xWk3V9lChoBmgJaA9DCLbz/dT4c3NAlIaUUpRoFUu2aBZHQMhWOemvW6N1fZQoaAZoCWgPQwiEnPf/cQBGQJSGlFKUaBVLWmgWR0DIVjyOWBz4dX2UKGgGaAloD0MIFcYWgtxkc0CUhpRSlGgVS7loFkdAyFY+pgkTpXV9lChoBmgJaA9DCJwXJ76aQXFAlIaUUpRoFUukaBZHQMhWP1tXPqt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4896, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.95, "ent_coef": 0.02, "vf_coef": 1.0, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e37f5292ee3fca6d9dde99f44f8a3f406aa3f9dfa1e6806cec530f3bb27a3c35
|
3 |
+
size 144333
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f24a2e714d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24a2e71560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24a2e715f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24a2e71680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f24a2e71710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f24a2e717a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24a2e71830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f24a2e718c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24a2e71950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24a2e719e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24a2e71a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f24a2eba840>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652201870.5410376,
|
51 |
+
"learning_rate": {
|
52 |
+
":type:": "<class 'function'>",
|
53 |
+
":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCGQBfAAUAFMAlE5HP1BiTdLxqfyGlCmMAWGUhZSMHjxpcHl0aG9uLWlucHV0LTctOWU4MWY1NWI0MDdhPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
54 |
+
},
|
55 |
+
"tensorboard_log": null,
|
56 |
+
"lr_schedule": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsCS0NDCGQBfAAUAFMAlE5HP1BiTdLxqfyGlCmMAWGUhZSMHjxpcHl0aG9uLWlucHV0LTctOWU4MWY1NWI0MDdhPpSMCDxsYW1iZGE+lEsKQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBd9lH2UKGgUaA6MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
59 |
+
},
|
60 |
+
"_last_obs": {
|
61 |
+
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALMvBz56oi0+c5zUvvw8Hb95udu8PqdBvgAAAAAAAAAAZtHLvHvsm7oy3Ik5tvqFNNnZ+jq6Jp+4AACAPwAAgD8NNUa+jwOVPyYCo74fdU6/kDwgvzp1SL0AAAAAAAAAAM3erjzKD7s/8j/APcJONr6YrAG9tk8kvAAAAAAAAAAAZoA+PEMaU7xedvW9S2RDPAK7tz2oyyK9AACAPwAAgD+ApZo9+jKjP3IUIj/Q1i6/mwSpPHJ6eT4AAAAAAAAAAO3pJb4I92c/0NFdvnVPUr+Gd+u+Ly+LPAAAAAAAAAAA2j/SvfoFFD41vuM+ad4Lv/KH4T2jp1c+AAAAAAAAAAAAegg+svi0Pzqb2z5N6bC+1WHWPh3OAD8AAAAAAAAAABpsDz1Ff7E/PwqKPnewcr5yzrA8grzwPQAAAAAAAAAAZp3fvaCqgz4/wjI+qRIiv442FL61MlI+AAAAAAAAAACag9w8qHu6P5SaCz4TxZO9oMTyuzrn9j0AAAAAAAAAAIaWOD5s3ag/nY7ZPoCAIb+5Vhk/aCRQPgAAAAAAAAAAmqH5uwV5r7tDy3k7IfC3PIk4Hj1a75m9AACAPwAAgD96Rg0+lYkTP3/rwLxyI2W/nU98Pg1z+70AAAAAAAAAAICTTr3zFw0/yvkAPLPVcL/5K9a9ODuVPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
63 |
+
},
|
64 |
+
"_last_episode_starts": {
|
65 |
+
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
67 |
+
},
|
68 |
+
"_last_original_obs": null,
|
69 |
+
"_episode_num": 0,
|
70 |
+
"use_sde": false,
|
71 |
+
"sde_sample_freq": -1,
|
72 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
73 |
+
"ep_info_buffer": {
|
74 |
+
":type:": "<class 'collections.deque'>",
|
75 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIscBXdCswcUCUhpRSlIwBbJRLoYwBdJRHQMhC9dDhLoR1fZQoaAZoCWgPQwiOO6WDdaZwQJSGlFKUaBVLm2gWR0DIVBv4/NaAdX2UKGgGaAloD0MIZRcMrvl+ckCUhpRSlGgVS5JoFkdAyFQdVhkRSXV9lChoBmgJaA9DCC9pjNYRuHNAlIaUUpRoFUu8aBZHQMhUHdnCfpV1fZQoaAZoCWgPQwhtqBjnb/hwQJSGlFKUaBVLpGgWR0DIVCRsyi22dX2UKGgGaAloD0MIQ/8EFyvGc0CUhpRSlGgVS7hoFkdAyFQkUfPom3V9lChoBmgJaA9DCOTziqdeAXBAlIaUUpRoFUueaBZHQMhUNFS88Ld1fZQoaAZoCWgPQwj0+/7NSzlyQJSGlFKUaBVLqGgWR0DIVDzExZdOdX2UKGgGaAloD0MITkUqjO2bckCUhpRSlGgVS5NoFkdAyFQ/sWO6unV9lChoBmgJaA9DCPzgfOoYS3FAlIaUUpRoFUulaBZHQMhUQblaKUF1fZQoaAZoCWgPQwghAaPLG/JyQJSGlFKUaBVLuWgWR0DIVEUp1A7gdX2UKGgGaAloD0MItmYrL3l8c0CUhpRSlGgVS61oFkdAyFRJM1TBInV9lChoBmgJaA9DCKvQQCybkHJAlIaUUpRoFUusaBZHQMhUUDzZpSJ1fZQoaAZoCWgPQwiV1t8SwK1yQJSGlFKUaBVLwGgWR0DIVGpiI+GHdX2UKGgGaAloD0MIDD7NyUsfc0CUhpRSlGgVS+RoFkdAyFRqXSBsh3V9lChoBmgJaA9DCLbZWIn5FnNAlIaUUpRoFUugaBZHQMhUecT8HfN1fZQoaAZoCWgPQwix3T1A98tzQJSGlFKUaBVLxWgWR0DIVH/lnyuqdX2UKGgGaAloD0MIU0Da/0DZckCUhpRSlGgVS7poFkdAyFSCQ0XP7nV9lChoBmgJaA9DCCNJEK4AFnNAlIaUUpRoFUupaBZHQMhUgkRzzVd1fZQoaAZoCWgPQwiXqx+bZPRzQJSGlFKUaBVLs2gWR0DIVI9bzK9xdX2UKGgGaAloD0MIHNKowEkLckCUhpRSlGgVS7ZoFkdAyFSQ8r7O3XV9lChoBmgJaA9DCNGt1/RgOXRAlIaUUpRoFUvJaBZHQMhUlAyVObl1fZQoaAZoCWgPQwhjCWtjbKFyQJSGlFKUaBVLhmgWR0DIVJs6RyOrdX2UKGgGaAloD0MIQPZ690dQcUCUhpRSlGgVS61oFkdAyFScce8wpXV9lChoBmgJaA9DCB7+mqxRa3JAlIaUUpRoFUuvaBZHQMhUqoHC4z91fZQoaAZoCWgPQwg6XKs97GZzQJSGlFKUaBVLwmgWR0DIVLBQpF1CdX2UKGgGaAloD0MINSkF3V7Pc0CUhpRSlGgVS79oFkdAyFSxns9jgHV9lChoBmgJaA9DCFUuVP61xnNAlIaUUpRoFUvBaBZHQMhUwmm+Cbt1fZQoaAZoCWgPQwiR1hh0QpNwQJSGlFKUaBVLnGgWR0DIVMSed07sdX2UKGgGaAloD0MIxAYLJ+lcc0CUhpRSlGgVS5xoFkdAyFTEdIXj2nV9lChoBmgJaA9DCKlqgqj7snFAlIaUUpRoFUuWaBZHQMhUzvppvgp1fZQoaAZoCWgPQwgMPs3Jy6VzQJSGlFKUaBVL72gWR0DIVNKW1MM7dX2UKGgGaAloD0MImKPH761ocUCUhpRSlGgVS5ZoFkdAyFTUAG0NSnV9lChoBmgJaA9DCGxDxTi/D3NAlIaUUpRoFUugaBZHQMhU2mShakh1fZQoaAZoCWgPQwhvSnmtxHhxQJSGlFKUaBVLt2gWR0DIVOZ59mYjdX2UKGgGaAloD0MIVRNE3ce6cECUhpRSlGgVS5loFkdAyFTnPtUn5XV9lChoBmgJaA9DCLqe6LrwyHFAlIaUUpRoFUumaBZHQMhU6ygXdj51fZQoaAZoCWgPQwhMHHkgsupyQJSGlFKUaBVLnGgWR0DIVPGUY8+zdX2UKGgGaAloD0MISWdg5CVkc0CUhpRSlGgVS7doFkdAyFTyzBRAKXV9lChoBmgJaA9DCG5Q+62d7HJAlIaUUpRoFUu8aBZHQMhVAkzoEB91fZQoaAZoCWgPQwjPFaWEILpyQJSGlFKUaBVLkmgWR0DIVQITCcgAdX2UKGgGaAloD0MIQpdw6K0ncUCUhpRSlGgVS5toFkdAyFUFo6CDmXV9lChoBmgJaA9DCNHLKJabe3JAlIaUUpRoFUu9aBZHQMhVEfZElVt1fZQoaAZoCWgPQwhW0opv6AlxQJSGlFKUaBVLfmgWR0DIVRWnyd4FdX2UKGgGaAloD0MIP/1nzc8zcUCUhpRSlGgVS6FoFkdAyFUZ70nPV3V9lChoBmgJaA9DCIoFvqJbi3FAlIaUUpRoFUuGaBZHQMhVG24d6s11fZQoaAZoCWgPQwjYn8TnDi9xQJSGlFKUaBVLlWgWR0DIVR6MNtqIdX2UKGgGaAloD0MIXAGFejrhcUCUhpRSlGgVS6xoFkdAyFUhoJzDGnV9lChoBmgJaA9DCIUKDi8I0XJAlIaUUpRoFUu0aBZHQMhVJfVy3kR1fZQoaAZoCWgPQwjZI9QMKT1yQJSGlFKUaBVLi2gWR0DIVTSpR4yHdX2UKGgGaAloD0MIyorh6sDScECUhpRSlGgVS59oFkdAyFU67ROUMXV9lChoBmgJaA9DCFG+oIXEbHNAlIaUUpRoFUu+aBZHQMhVPy0a6z51fZQoaAZoCWgPQwh4gCctHO5zQJSGlFKUaBVLrWgWR0DIVUMvAXVLdX2UKGgGaAloD0MI3eukvmxUc0CUhpRSlGgVS6BoFkdAyFVGhQFcIXV9lChoBmgJaA9DCHHiqx1FzXJAlIaUUpRoFUuSaBZHQMhVT+RPoFF1fZQoaAZoCWgPQwhXlX1XRIlyQJSGlFKUaBVLrmgWR0DIVV/a+N96dX2UKGgGaAloD0MIho+IKVEwdECUhpRSlGgVS8loFkdAyFVfsOXmeXV9lChoBmgJaA9DCI0KnGyDxXNAlIaUUpRoFUu9aBZHQMhVbCwjdHl1fZQoaAZoCWgPQwjLEMe6OMNwQJSGlFKUaBVLp2gWR0DIVXV7ngYQdX2UKGgGaAloD0MI+fNtwRLOc0CUhpRSlGgVS8BoFkdAyFV6zeoDPnV9lChoBmgJaA9DCL+36c9+jHJAlIaUUpRoFUu0aBZHQMhVffgrH2h1fZQoaAZoCWgPQwg0u+6tSHhzQJSGlFKUaBVLxGgWR0DIVYEJa7mMdX2UKGgGaAloD0MIZeCAlq7+ckCUhpRSlGgVS7hoFkdAyFWDeYUnHHV9lChoBmgJaA9DCINNnUcFF3JAlIaUUpRoFUuraBZHQMhVhCrcTJ11fZQoaAZoCWgPQwh+iuPAq/dxQJSGlFKUaBVLtWgWR0DIVYT1K5CodX2UKGgGaAloD0MIpTFaR5V3c0CUhpRSlGgVS6FoFkdAyFWT0UXYUXV9lChoBmgJaA9DCN83vvaMoHNAlIaUUpRoFUu+aBZHQMhVnS4FzMl1fZQoaAZoCWgPQwgdO6jEtRZ0QJSGlFKUaBVLsmgWR0DIVaFhb4ahdX2UKGgGaAloD0MIbojxmhe7ckCUhpRSlGgVS6xoFkdAyFWlid8Rc3V9lChoBmgJaA9DCCmV8IReJ3BAlIaUUpRoFUueaBZHQMhVpjaoMrp1fZQoaAZoCWgPQwjZJ4BiJO5yQJSGlFKUaBVLkmgWR0DIVa6NyYG/dX2UKGgGaAloD0MI7C+7Jw/Wc0CUhpRSlGgVS8RoFkdAyFWumnfl63V9lChoBmgJaA9DCHuEmiHVSnBAlIaUUpRoFUueaBZHQMhVvuavzOJ1fZQoaAZoCWgPQwiA7suZbQtxQJSGlFKUaBVLk2gWR0DIVcITqSowdX2UKGgGaAloD0MI0GIpkm/gcUCUhpRSlGgVS7poFkdAyFXCXu3MIXV9lChoBmgJaA9DCIDXZ8563XFAlIaUUpRoFUuVaBZHQMhV02Xsw+N1fZQoaAZoCWgPQwg2I4PcRexAQJSGlFKUaBVLaGgWR0DIVdSAe7tidX2UKGgGaAloD0MICTiEKrVUcECUhpRSlGgVS6ZoFkdAyFXY8DB/JHV9lChoBmgJaA9DCPjFpSot/HNAlIaUUpRoFUu0aBZHQMhV2p1q33J1fZQoaAZoCWgPQwgGLSRgtEtxQJSGlFKUaBVLq2gWR0DIVd6K1og3dX2UKGgGaAloD0MIHVVNEHU1ckCUhpRSlGgVS7RoFkdAyFXj+RYA83V9lChoBmgJaA9DCL5KPnaXa3RAlIaUUpRoFUvHaBZHQMhV6FLeyiV1fZQoaAZoCWgPQwgqN1FLM8BzQJSGlFKUaBVLoWgWR0DIVep3xFy8dX2UKGgGaAloD0MIaAOwAZF1cECUhpRSlGgVS6FoFkdAyFX6+QlrunV9lChoBmgJaA9DCEAwR48fAHJAlIaUUpRoFUuUaBZHQMhV/ZGSZBt1fZQoaAZoCWgPQwiiKqbSj1hxQJSGlFKUaBVLpGgWR0DIVgZaTwDvdX2UKGgGaAloD0MIe2ZJgFooc0CUhpRSlGgVS81oFkdAyFYPLRKHwnV9lChoBmgJaA9DCDMyyF0EyHNAlIaUUpRoFUvEaBZHQMhWDxk/bCd1fZQoaAZoCWgPQwgSo+cWuuRyQJSGlFKUaBVLk2gWR0DIVhKbvw3HdX2UKGgGaAloD0MIs5quJ3occ0CUhpRSlGgVS4hoFkdAyFYdl3hXKnV9lChoBmgJaA9DCFBUNqypkHNAlIaUUpRoFUuvaBZHQMhWIW8yvcJ1fZQoaAZoCWgPQwh/3H75JGx0QJSGlFKUaBVLt2gWR0DIViJZOi35dX2UKGgGaAloD0MI2LrUCL1zcUCUhpRSlGgVS5xoFkdAyFYrcCYCyXV9lChoBmgJaA9DCPTCnQujD3JAlIaUUpRoFUuLaBZHQMhWLONYKY11fZQoaAZoCWgPQwjHoBNCx29yQJSGlFKUaBVLrmgWR0DIVi+f29L6dX2UKGgGaAloD0MIn8iTpOvDcUCUhpRSlGgVS5hoFkdAyFY3Q3xWk3V9lChoBmgJaA9DCLbz/dT4c3NAlIaUUpRoFUu2aBZHQMhWOemvW6N1fZQoaAZoCWgPQwiEnPf/cQBGQJSGlFKUaBVLWmgWR0DIVjyOWBz4dX2UKGgGaAloD0MIFcYWgtxkc0CUhpRSlGgVS7loFkdAyFY+pgkTpXV9lChoBmgJaA9DCJwXJ76aQXFAlIaUUpRoFUukaBZHQMhWP1tXPqt1ZS4="
|
76 |
+
},
|
77 |
+
"ep_success_buffer": {
|
78 |
+
":type:": "<class 'collections.deque'>",
|
79 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
80 |
+
},
|
81 |
+
"_n_updates": 4896,
|
82 |
+
"n_steps": 1024,
|
83 |
+
"gamma": 0.999,
|
84 |
+
"gae_lambda": 0.95,
|
85 |
+
"ent_coef": 0.02,
|
86 |
+
"vf_coef": 1.0,
|
87 |
+
"max_grad_norm": 0.5,
|
88 |
+
"batch_size": 32,
|
89 |
+
"n_epochs": 16,
|
90 |
+
"clip_range": {
|
91 |
+
":type:": "<class 'function'>",
|
92 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
93 |
+
},
|
94 |
+
"clip_range_vf": null,
|
95 |
+
"normalize_advantage": true,
|
96 |
+
"target_kl": null
|
97 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a24440635663c853105463982905268d46a4b9a149f0f14fac7b6f34e406736
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e05de635f2274ae63934a415c9f5eb0a8f6471c380c81fc80fce5c1170d3f26
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c48d54a3f0d8d90f20da94f8539587e841419e39b60e5053e8ae9bc630c3774
|
3 |
+
size 180931
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 287.1177886137288, "std_reward": 20.397326173481922, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T20:45:22.201743"}
|