timm
/

Image Classification
timm
PyTorch
Safetensors
Transformers
rwightman HF staff commited on
Commit
9b76dd7
·
verified ·
1 Parent(s): ba4faa3
Files changed (4) hide show
  1. README.md +129 -0
  2. config.json +41 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: apache-2.0
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for hgnet_small.paddle_in1k
11
+
12
+ A HGNet (High Performance GPU Net) image classification model. Trained on ImageNet-1k by model authors.
13
+
14
+
15
+
16
+ ## Model Details
17
+ - **Model Type:** Image classification / feature backbone
18
+ - **Model Stats:**
19
+ - Params (M): 24.4
20
+ - GMACs: 8.5
21
+ - Activations (M): 8.8
22
+ - Image size: train = 224 x 224, test = 288 x 288
23
+ - **Dataset:** ImageNet-1k
24
+ - **Papers:**
25
+ - Model paper unknown: TBD
26
+ - Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones: https://arxiv.org/abs/2103.05959
27
+ - **Original:** https://github.com/PaddlePaddle/PaddleClas
28
+
29
+ ## Model Usage
30
+ ### Image Classification
31
+ ```python
32
+ from urllib.request import urlopen
33
+ from PIL import Image
34
+ import timm
35
+
36
+ img = Image.open(urlopen(
37
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
38
+ ))
39
+
40
+ model = timm.create_model('hgnet_small.paddle_in1k', pretrained=True)
41
+ model = model.eval()
42
+
43
+ # get model specific transforms (normalization, resize)
44
+ data_config = timm.data.resolve_model_data_config(model)
45
+ transforms = timm.data.create_transform(**data_config, is_training=False)
46
+
47
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
48
+
49
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
50
+ ```
51
+
52
+ ### Feature Map Extraction
53
+ ```python
54
+ from urllib.request import urlopen
55
+ from PIL import Image
56
+ import timm
57
+
58
+ img = Image.open(urlopen(
59
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
60
+ ))
61
+
62
+ model = timm.create_model(
63
+ 'hgnet_small.paddle_in1k',
64
+ pretrained=True,
65
+ features_only=True,
66
+ )
67
+ model = model.eval()
68
+
69
+ # get model specific transforms (normalization, resize)
70
+ data_config = timm.data.resolve_model_data_config(model)
71
+ transforms = timm.data.create_transform(**data_config, is_training=False)
72
+
73
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
74
+
75
+ for o in output:
76
+ # print shape of each feature map in output
77
+ # e.g.:
78
+ # torch.Size([1, 256, 56, 56])
79
+ # torch.Size([1, 512, 28, 28])
80
+ # torch.Size([1, 768, 14, 14])
81
+ # torch.Size([1, 1024, 7, 7])
82
+
83
+ print(o.shape)
84
+ ```
85
+
86
+ ### Image Embeddings
87
+ ```python
88
+ from urllib.request import urlopen
89
+ from PIL import Image
90
+ import timm
91
+
92
+ img = Image.open(urlopen(
93
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
94
+ ))
95
+
96
+ model = timm.create_model(
97
+ 'hgnet_small.paddle_in1k',
98
+ pretrained=True,
99
+ num_classes=0, # remove classifier nn.Linear
100
+ )
101
+ model = model.eval()
102
+
103
+ # get model specific transforms (normalization, resize)
104
+ data_config = timm.data.resolve_model_data_config(model)
105
+ transforms = timm.data.create_transform(**data_config, is_training=False)
106
+
107
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
108
+
109
+ # or equivalently (without needing to set num_classes=0)
110
+
111
+ output = model.forward_features(transforms(img).unsqueeze(0))
112
+ # output is unpooled, a (1, 1024, 7, 7) shaped tensor
113
+
114
+ output = model.forward_head(output, pre_logits=True)
115
+ # output is a (1, num_features) shaped tensor
116
+ ```
117
+
118
+ ## Model Comparison
119
+ ### By Top-1
120
+
121
+ ## Citation
122
+ ```bibtex
123
+ @article{cui2021beyond,
124
+ title={Beyond Self-Supervision: A Simple Yet Effective Network Distillation Alternative to Improve Backbones},
125
+ author={Cui, Cheng and Guo, Ruoyu and Du, Yuning and He, Dongliang and Li, Fu and Wu, Zewu and Liu, Qiwen and Wen, Shilei and Huang, Jizhou and Hu, Xiaoguang and others},
126
+ journal={arXiv preprint arXiv:2103.05959},
127
+ year={2021}
128
+ }
129
+ ```
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "hgnet_small",
3
+ "num_classes": 1000,
4
+ "num_features": 1024,
5
+ "pretrained_cfg": {
6
+ "tag": "paddle_in1k",
7
+ "custom_load": false,
8
+ "input_size": [
9
+ 3,
10
+ 224,
11
+ 224
12
+ ],
13
+ "test_input_size": [
14
+ 3,
15
+ 288,
16
+ 288
17
+ ],
18
+ "fixed_input_size": false,
19
+ "interpolation": "bicubic",
20
+ "crop_pct": 0.965,
21
+ "test_crop_pct": 1.0,
22
+ "crop_mode": "center",
23
+ "mean": [
24
+ 0.485,
25
+ 0.456,
26
+ 0.406
27
+ ],
28
+ "std": [
29
+ 0.229,
30
+ 0.224,
31
+ 0.225
32
+ ],
33
+ "num_classes": 1000,
34
+ "pool_size": [
35
+ 7,
36
+ 7
37
+ ],
38
+ "first_conv": "stem.stem.0.conv",
39
+ "classifier": "head.fc"
40
+ }
41
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee61b236210517affa44645a152717ff55242dfbc884cf7fa6d06facf74d890d
3
+ size 97555272
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff3d2c5630b66fa7fa3f85a8359b37427e7dc2b3fb5591067f85cc5544cc2c17
3
+ size 97623382