Yong99 commited on
Commit
d091651
·
verified ·
1 Parent(s): a3d99e5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -3
README.md CHANGED
@@ -14,7 +14,7 @@ We evaluate the model on the following benchmarks: [TSLib Dataset](), [GIFT-Eval
14
 
15
  # Quickstart
16
  ```
17
- pip install transformers==4.40.1 # use this version of package for the stable compatibility
18
  ```
19
 
20
  ```
@@ -27,17 +27,19 @@ model = AutoModelForCausalLM.from_pretrained('thuml/timer-base', trust_remote_co
27
  # prepare input
28
  batch_size, lookback_length = 1, 2880
29
  seqs = torch.randn(batch_size, lookback_length)
30
- mean, std = seqs.mean(dim=-1, keepdim=True), seqs.std(dim=-1, keepdim=True)
31
  normed_seqs = (seqs - mean) / std
32
 
33
  # forecast
34
  prediction_length = 96
35
  normed_output = model.generate(normed_seqs, max_new_tokens=prediction_length)[:, -prediction_length:]
36
- output = std * normed_output + mean
37
 
38
  print(output.shape)
39
  ```
40
 
 
 
41
  ## Specification
42
 
43
  * Architecture: Causal Transformer (Decoder-only)
 
14
 
15
  # Quickstart
16
  ```
17
+ pip install transformers==4.40.1 # please use this version for the stable compatibility
18
  ```
19
 
20
  ```
 
27
  # prepare input
28
  batch_size, lookback_length = 1, 2880
29
  seqs = torch.randn(batch_size, lookback_length)
30
+ mean, std = seqs.mean(dim=-1, keepdim=True), seqs.std(dim=-1, keepdim=True) # normalize the input to mitigate different scale
31
  normed_seqs = (seqs - mean) / std
32
 
33
  # forecast
34
  prediction_length = 96
35
  normed_output = model.generate(normed_seqs, max_new_tokens=prediction_length)[:, -prediction_length:]
36
+ output = std * normed_output + mean # rescale the output to the original scale
37
 
38
  print(output.shape)
39
  ```
40
 
41
+ A notebook example is also provided [here](https://huggingface.co/thuml/timer-1.1-84m/blob/main/prediction_example_etth1.ipynb). Try it out!
42
+
43
  ## Specification
44
 
45
  * Architecture: Causal Transformer (Decoder-only)