File size: 1,712 Bytes
249a687
 
d634a5b
249a687
 
 
 
 
 
 
 
 
 
 
 
 
 
d634a5b
249a687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d634a5b
249a687
 
 
 
 
f21e813
249a687
 
 
 
 
d634a5b
 
 
 
 
 
 
 
 
249a687
 
 
 
 
 
 
d634a5b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
base_model: AI-Sweden-Models/gpt-sw3-1.3b
tags:
- generated_from_trainer
model-index:
- name: gpt_icesum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt_icesum

This model is a fine-tuned version of [AI-Sweden-Models/gpt-sw3-1.3b](https://huggingface.co/AI-Sweden-Models/gpt-sw3-1.3b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7960

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.9148        | 0.22  | 50   | 1.8159          |
| 1.9237        | 0.44  | 100  | 1.8051          |
| 1.8317        | 0.67  | 150  | 1.8006          |
| 2.0264        | 0.89  | 200  | 1.7985          |
| 1.81          | 1.11  | 250  | 1.7961          |
| 1.9393        | 1.33  | 300  | 1.7951          |
| 1.8159        | 1.56  | 350  | 1.7934          |
| 1.8204        | 1.78  | 400  | 1.7959          |
| 1.9231        | 2.0   | 450  | 1.7960          |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.0+cu118
- Datasets 2.17.1
- Tokenizers 0.15.2