thinhkosay commited on
Commit
9b8272b
·
verified ·
1 Parent(s): 070ab65

End of training

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google-bert/bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: sentiment-bert-base-uncased
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # sentiment-bert-base-uncased
19
+
20
+ This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3040
23
+ - Precision: 0.8895
24
+ - Recall: 0.8926
25
+ - F1: 0.8910
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 2e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 16
47
+ - seed: 42
48
+ - gradient_accumulation_steps: 2
49
+ - total_train_batch_size: 32
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: cosine
52
+ - lr_scheduler_warmup_ratio: 0.1
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
58
+ |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|
59
+ | 0.3086 | 0.9990 | 512 | 0.3369 | 0.8657 | 0.8716 | 0.8647 |
60
+ | 0.29 | 2.0 | 1025 | 0.2830 | 0.8854 | 0.8921 | 0.8876 |
61
+ | 0.1661 | 2.9971 | 1536 | 0.3040 | 0.8895 | 0.8926 | 0.8910 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.40.2
67
+ - Pytorch 2.2.1+cu121
68
+ - Datasets 2.15.0
69
+ - Tokenizers 0.19.1