update model card README.md
Browse files
README.md
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
---
|
2 |
-
license: mit
|
3 |
tags:
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
@@ -12,7 +11,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# gpt2-reporter
|
14 |
|
15 |
-
This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset.
|
|
|
|
|
16 |
|
17 |
## Model description
|
18 |
|
@@ -32,16 +33,25 @@ More information needed
|
|
32 |
|
33 |
The following hyperparameters were used during training:
|
34 |
- learning_rate: 5e-05
|
35 |
-
- train_batch_size:
|
36 |
-
- eval_batch_size:
|
37 |
- seed: 42
|
38 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
39 |
- lr_scheduler_type: linear
|
40 |
- lr_scheduler_warmup_steps: 500
|
41 |
-
- num_epochs:
|
42 |
|
43 |
### Training results
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
|
47 |
### Framework versions
|
|
|
1 |
---
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
model-index:
|
|
|
11 |
|
12 |
# gpt2-reporter
|
13 |
|
14 |
+
This model is a fine-tuned version of [uer/gpt2-chinese-cluecorpussmall](https://huggingface.co/uer/gpt2-chinese-cluecorpussmall) on an unknown dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 2.4819
|
17 |
|
18 |
## Model description
|
19 |
|
|
|
33 |
|
34 |
The following hyperparameters were used during training:
|
35 |
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 8
|
37 |
+
- eval_batch_size: 8
|
38 |
- seed: 42
|
39 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
- lr_scheduler_type: linear
|
41 |
- lr_scheduler_warmup_steps: 500
|
42 |
+
- num_epochs: 2
|
43 |
|
44 |
### Training results
|
45 |
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| 2.7694 | 0.28 | 400 | 2.5751 |
|
49 |
+
| 2.6336 | 0.56 | 800 | 2.5318 |
|
50 |
+
| 2.5564 | 0.84 | 1200 | 2.5071 |
|
51 |
+
| 2.482 | 1.12 | 1600 | 2.4993 |
|
52 |
+
| 2.4243 | 1.4 | 2000 | 2.4910 |
|
53 |
+
| 2.4009 | 1.68 | 2400 | 2.4850 |
|
54 |
+
| 2.3865 | 1.96 | 2800 | 2.4819 |
|
55 |
|
56 |
|
57 |
### Framework versions
|