Upload README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,1165 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
tags:
|
| 3 |
+
- mteb
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- sentence-transformers
|
| 6 |
+
- Sentence Transformers
|
| 7 |
+
model-index:
|
| 8 |
+
- name: gte-small-zh
|
| 9 |
+
results:
|
| 10 |
+
- task:
|
| 11 |
+
type: STS
|
| 12 |
+
dataset:
|
| 13 |
+
type: C-MTEB/AFQMC
|
| 14 |
+
name: MTEB AFQMC
|
| 15 |
+
config: default
|
| 16 |
+
split: validation
|
| 17 |
+
revision: None
|
| 18 |
+
metrics:
|
| 19 |
+
- type: cos_sim_pearson
|
| 20 |
+
value: 35.80906032378281
|
| 21 |
+
- type: cos_sim_spearman
|
| 22 |
+
value: 36.688967176174415
|
| 23 |
+
- type: euclidean_pearson
|
| 24 |
+
value: 35.70701955438158
|
| 25 |
+
- type: euclidean_spearman
|
| 26 |
+
value: 36.6889470691436
|
| 27 |
+
- type: manhattan_pearson
|
| 28 |
+
value: 35.832741768286944
|
| 29 |
+
- type: manhattan_spearman
|
| 30 |
+
value: 36.831888591957195
|
| 31 |
+
- task:
|
| 32 |
+
type: STS
|
| 33 |
+
dataset:
|
| 34 |
+
type: C-MTEB/ATEC
|
| 35 |
+
name: MTEB ATEC
|
| 36 |
+
config: default
|
| 37 |
+
split: test
|
| 38 |
+
revision: None
|
| 39 |
+
metrics:
|
| 40 |
+
- type: cos_sim_pearson
|
| 41 |
+
value: 44.667266488330384
|
| 42 |
+
- type: cos_sim_spearman
|
| 43 |
+
value: 45.77390794946174
|
| 44 |
+
- type: euclidean_pearson
|
| 45 |
+
value: 48.14272832901943
|
| 46 |
+
- type: euclidean_spearman
|
| 47 |
+
value: 45.77390569666109
|
| 48 |
+
- type: manhattan_pearson
|
| 49 |
+
value: 48.187667158563094
|
| 50 |
+
- type: manhattan_spearman
|
| 51 |
+
value: 45.80979161966117
|
| 52 |
+
- task:
|
| 53 |
+
type: Classification
|
| 54 |
+
dataset:
|
| 55 |
+
type: mteb/amazon_reviews_multi
|
| 56 |
+
name: MTEB AmazonReviewsClassification (zh)
|
| 57 |
+
config: zh
|
| 58 |
+
split: test
|
| 59 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
| 60 |
+
metrics:
|
| 61 |
+
- type: accuracy
|
| 62 |
+
value: 38.690000000000005
|
| 63 |
+
- type: f1
|
| 64 |
+
value: 36.868257131984016
|
| 65 |
+
- task:
|
| 66 |
+
type: STS
|
| 67 |
+
dataset:
|
| 68 |
+
type: C-MTEB/BQ
|
| 69 |
+
name: MTEB BQ
|
| 70 |
+
config: default
|
| 71 |
+
split: test
|
| 72 |
+
revision: None
|
| 73 |
+
metrics:
|
| 74 |
+
- type: cos_sim_pearson
|
| 75 |
+
value: 49.03674224607541
|
| 76 |
+
- type: cos_sim_spearman
|
| 77 |
+
value: 49.63568854885055
|
| 78 |
+
- type: euclidean_pearson
|
| 79 |
+
value: 49.47441886441355
|
| 80 |
+
- type: euclidean_spearman
|
| 81 |
+
value: 49.63567815431205
|
| 82 |
+
- type: manhattan_pearson
|
| 83 |
+
value: 49.76480072909559
|
| 84 |
+
- type: manhattan_spearman
|
| 85 |
+
value: 49.977789367288224
|
| 86 |
+
- task:
|
| 87 |
+
type: Clustering
|
| 88 |
+
dataset:
|
| 89 |
+
type: C-MTEB/CLSClusteringP2P
|
| 90 |
+
name: MTEB CLSClusteringP2P
|
| 91 |
+
config: default
|
| 92 |
+
split: test
|
| 93 |
+
revision: None
|
| 94 |
+
metrics:
|
| 95 |
+
- type: v_measure
|
| 96 |
+
value: 39.538126779019755
|
| 97 |
+
- task:
|
| 98 |
+
type: Clustering
|
| 99 |
+
dataset:
|
| 100 |
+
type: C-MTEB/CLSClusteringS2S
|
| 101 |
+
name: MTEB CLSClusteringS2S
|
| 102 |
+
config: default
|
| 103 |
+
split: test
|
| 104 |
+
revision: None
|
| 105 |
+
metrics:
|
| 106 |
+
- type: v_measure
|
| 107 |
+
value: 37.333105487031766
|
| 108 |
+
- task:
|
| 109 |
+
type: Reranking
|
| 110 |
+
dataset:
|
| 111 |
+
type: C-MTEB/CMedQAv1-reranking
|
| 112 |
+
name: MTEB CMedQAv1
|
| 113 |
+
config: default
|
| 114 |
+
split: test
|
| 115 |
+
revision: None
|
| 116 |
+
metrics:
|
| 117 |
+
- type: map
|
| 118 |
+
value: 86.08142426347963
|
| 119 |
+
- type: mrr
|
| 120 |
+
value: 88.04269841269841
|
| 121 |
+
- task:
|
| 122 |
+
type: Reranking
|
| 123 |
+
dataset:
|
| 124 |
+
type: C-MTEB/CMedQAv2-reranking
|
| 125 |
+
name: MTEB CMedQAv2
|
| 126 |
+
config: default
|
| 127 |
+
split: test
|
| 128 |
+
revision: None
|
| 129 |
+
metrics:
|
| 130 |
+
- type: map
|
| 131 |
+
value: 87.25694119382474
|
| 132 |
+
- type: mrr
|
| 133 |
+
value: 89.36853174603175
|
| 134 |
+
- task:
|
| 135 |
+
type: Retrieval
|
| 136 |
+
dataset:
|
| 137 |
+
type: C-MTEB/CmedqaRetrieval
|
| 138 |
+
name: MTEB CmedqaRetrieval
|
| 139 |
+
config: default
|
| 140 |
+
split: dev
|
| 141 |
+
revision: None
|
| 142 |
+
metrics:
|
| 143 |
+
- type: map_at_1
|
| 144 |
+
value: 23.913999999999998
|
| 145 |
+
- type: map_at_10
|
| 146 |
+
value: 35.913000000000004
|
| 147 |
+
- type: map_at_100
|
| 148 |
+
value: 37.836
|
| 149 |
+
- type: map_at_1000
|
| 150 |
+
value: 37.952000000000005
|
| 151 |
+
- type: map_at_3
|
| 152 |
+
value: 31.845000000000002
|
| 153 |
+
- type: map_at_5
|
| 154 |
+
value: 34.0
|
| 155 |
+
- type: mrr_at_1
|
| 156 |
+
value: 36.884
|
| 157 |
+
- type: mrr_at_10
|
| 158 |
+
value: 44.872
|
| 159 |
+
- type: mrr_at_100
|
| 160 |
+
value: 45.899
|
| 161 |
+
- type: mrr_at_1000
|
| 162 |
+
value: 45.945
|
| 163 |
+
- type: mrr_at_3
|
| 164 |
+
value: 42.331
|
| 165 |
+
- type: mrr_at_5
|
| 166 |
+
value: 43.674
|
| 167 |
+
- type: ndcg_at_1
|
| 168 |
+
value: 36.884
|
| 169 |
+
- type: ndcg_at_10
|
| 170 |
+
value: 42.459
|
| 171 |
+
- type: ndcg_at_100
|
| 172 |
+
value: 50.046
|
| 173 |
+
- type: ndcg_at_1000
|
| 174 |
+
value: 52.092000000000006
|
| 175 |
+
- type: ndcg_at_3
|
| 176 |
+
value: 37.225
|
| 177 |
+
- type: ndcg_at_5
|
| 178 |
+
value: 39.2
|
| 179 |
+
- type: precision_at_1
|
| 180 |
+
value: 36.884
|
| 181 |
+
- type: precision_at_10
|
| 182 |
+
value: 9.562
|
| 183 |
+
- type: precision_at_100
|
| 184 |
+
value: 1.572
|
| 185 |
+
- type: precision_at_1000
|
| 186 |
+
value: 0.183
|
| 187 |
+
- type: precision_at_3
|
| 188 |
+
value: 21.122
|
| 189 |
+
- type: precision_at_5
|
| 190 |
+
value: 15.274
|
| 191 |
+
- type: recall_at_1
|
| 192 |
+
value: 23.913999999999998
|
| 193 |
+
- type: recall_at_10
|
| 194 |
+
value: 52.891999999999996
|
| 195 |
+
- type: recall_at_100
|
| 196 |
+
value: 84.328
|
| 197 |
+
- type: recall_at_1000
|
| 198 |
+
value: 98.168
|
| 199 |
+
- type: recall_at_3
|
| 200 |
+
value: 37.095
|
| 201 |
+
- type: recall_at_5
|
| 202 |
+
value: 43.396
|
| 203 |
+
- task:
|
| 204 |
+
type: PairClassification
|
| 205 |
+
dataset:
|
| 206 |
+
type: C-MTEB/CMNLI
|
| 207 |
+
name: MTEB Cmnli
|
| 208 |
+
config: default
|
| 209 |
+
split: validation
|
| 210 |
+
revision: None
|
| 211 |
+
metrics:
|
| 212 |
+
- type: cos_sim_accuracy
|
| 213 |
+
value: 68.91160553217077
|
| 214 |
+
- type: cos_sim_ap
|
| 215 |
+
value: 76.45769658379533
|
| 216 |
+
- type: cos_sim_f1
|
| 217 |
+
value: 72.07988702844463
|
| 218 |
+
- type: cos_sim_precision
|
| 219 |
+
value: 63.384779137839274
|
| 220 |
+
- type: cos_sim_recall
|
| 221 |
+
value: 83.53986439092822
|
| 222 |
+
- type: dot_accuracy
|
| 223 |
+
value: 68.91160553217077
|
| 224 |
+
- type: dot_ap
|
| 225 |
+
value: 76.47279917239219
|
| 226 |
+
- type: dot_f1
|
| 227 |
+
value: 72.07988702844463
|
| 228 |
+
- type: dot_precision
|
| 229 |
+
value: 63.384779137839274
|
| 230 |
+
- type: dot_recall
|
| 231 |
+
value: 83.53986439092822
|
| 232 |
+
- type: euclidean_accuracy
|
| 233 |
+
value: 68.91160553217077
|
| 234 |
+
- type: euclidean_ap
|
| 235 |
+
value: 76.45768544225383
|
| 236 |
+
- type: euclidean_f1
|
| 237 |
+
value: 72.07988702844463
|
| 238 |
+
- type: euclidean_precision
|
| 239 |
+
value: 63.384779137839274
|
| 240 |
+
- type: euclidean_recall
|
| 241 |
+
value: 83.53986439092822
|
| 242 |
+
- type: manhattan_accuracy
|
| 243 |
+
value: 69.21226698737222
|
| 244 |
+
- type: manhattan_ap
|
| 245 |
+
value: 76.6623683693766
|
| 246 |
+
- type: manhattan_f1
|
| 247 |
+
value: 72.14058164628506
|
| 248 |
+
- type: manhattan_precision
|
| 249 |
+
value: 64.35643564356435
|
| 250 |
+
- type: manhattan_recall
|
| 251 |
+
value: 82.06686930091185
|
| 252 |
+
- type: max_accuracy
|
| 253 |
+
value: 69.21226698737222
|
| 254 |
+
- type: max_ap
|
| 255 |
+
value: 76.6623683693766
|
| 256 |
+
- type: max_f1
|
| 257 |
+
value: 72.14058164628506
|
| 258 |
+
- task:
|
| 259 |
+
type: Retrieval
|
| 260 |
+
dataset:
|
| 261 |
+
type: C-MTEB/CovidRetrieval
|
| 262 |
+
name: MTEB CovidRetrieval
|
| 263 |
+
config: default
|
| 264 |
+
split: dev
|
| 265 |
+
revision: None
|
| 266 |
+
metrics:
|
| 267 |
+
- type: map_at_1
|
| 268 |
+
value: 48.419000000000004
|
| 269 |
+
- type: map_at_10
|
| 270 |
+
value: 57.367999999999995
|
| 271 |
+
- type: map_at_100
|
| 272 |
+
value: 58.081
|
| 273 |
+
- type: map_at_1000
|
| 274 |
+
value: 58.108000000000004
|
| 275 |
+
- type: map_at_3
|
| 276 |
+
value: 55.251
|
| 277 |
+
- type: map_at_5
|
| 278 |
+
value: 56.53399999999999
|
| 279 |
+
- type: mrr_at_1
|
| 280 |
+
value: 48.472
|
| 281 |
+
- type: mrr_at_10
|
| 282 |
+
value: 57.359
|
| 283 |
+
- type: mrr_at_100
|
| 284 |
+
value: 58.055
|
| 285 |
+
- type: mrr_at_1000
|
| 286 |
+
value: 58.082
|
| 287 |
+
- type: mrr_at_3
|
| 288 |
+
value: 55.303999999999995
|
| 289 |
+
- type: mrr_at_5
|
| 290 |
+
value: 56.542
|
| 291 |
+
- type: ndcg_at_1
|
| 292 |
+
value: 48.472
|
| 293 |
+
- type: ndcg_at_10
|
| 294 |
+
value: 61.651999999999994
|
| 295 |
+
- type: ndcg_at_100
|
| 296 |
+
value: 65.257
|
| 297 |
+
- type: ndcg_at_1000
|
| 298 |
+
value: 65.977
|
| 299 |
+
- type: ndcg_at_3
|
| 300 |
+
value: 57.401
|
| 301 |
+
- type: ndcg_at_5
|
| 302 |
+
value: 59.681
|
| 303 |
+
- type: precision_at_1
|
| 304 |
+
value: 48.472
|
| 305 |
+
- type: precision_at_10
|
| 306 |
+
value: 7.576
|
| 307 |
+
- type: precision_at_100
|
| 308 |
+
value: 0.932
|
| 309 |
+
- type: precision_at_1000
|
| 310 |
+
value: 0.099
|
| 311 |
+
- type: precision_at_3
|
| 312 |
+
value: 21.25
|
| 313 |
+
- type: precision_at_5
|
| 314 |
+
value: 13.888
|
| 315 |
+
- type: recall_at_1
|
| 316 |
+
value: 48.419000000000004
|
| 317 |
+
- type: recall_at_10
|
| 318 |
+
value: 74.97399999999999
|
| 319 |
+
- type: recall_at_100
|
| 320 |
+
value: 92.202
|
| 321 |
+
- type: recall_at_1000
|
| 322 |
+
value: 97.893
|
| 323 |
+
- type: recall_at_3
|
| 324 |
+
value: 63.541000000000004
|
| 325 |
+
- type: recall_at_5
|
| 326 |
+
value: 68.994
|
| 327 |
+
- task:
|
| 328 |
+
type: Retrieval
|
| 329 |
+
dataset:
|
| 330 |
+
type: C-MTEB/DuRetrieval
|
| 331 |
+
name: MTEB DuRetrieval
|
| 332 |
+
config: default
|
| 333 |
+
split: dev
|
| 334 |
+
revision: None
|
| 335 |
+
metrics:
|
| 336 |
+
- type: map_at_1
|
| 337 |
+
value: 22.328
|
| 338 |
+
- type: map_at_10
|
| 339 |
+
value: 69.11
|
| 340 |
+
- type: map_at_100
|
| 341 |
+
value: 72.47
|
| 342 |
+
- type: map_at_1000
|
| 343 |
+
value: 72.54599999999999
|
| 344 |
+
- type: map_at_3
|
| 345 |
+
value: 46.938
|
| 346 |
+
- type: map_at_5
|
| 347 |
+
value: 59.56
|
| 348 |
+
- type: mrr_at_1
|
| 349 |
+
value: 81.35
|
| 350 |
+
- type: mrr_at_10
|
| 351 |
+
value: 87.066
|
| 352 |
+
- type: mrr_at_100
|
| 353 |
+
value: 87.212
|
| 354 |
+
- type: mrr_at_1000
|
| 355 |
+
value: 87.21799999999999
|
| 356 |
+
- type: mrr_at_3
|
| 357 |
+
value: 86.558
|
| 358 |
+
- type: mrr_at_5
|
| 359 |
+
value: 86.931
|
| 360 |
+
- type: ndcg_at_1
|
| 361 |
+
value: 81.35
|
| 362 |
+
- type: ndcg_at_10
|
| 363 |
+
value: 78.568
|
| 364 |
+
- type: ndcg_at_100
|
| 365 |
+
value: 82.86099999999999
|
| 366 |
+
- type: ndcg_at_1000
|
| 367 |
+
value: 83.628
|
| 368 |
+
- type: ndcg_at_3
|
| 369 |
+
value: 76.716
|
| 370 |
+
- type: ndcg_at_5
|
| 371 |
+
value: 75.664
|
| 372 |
+
- type: precision_at_1
|
| 373 |
+
value: 81.35
|
| 374 |
+
- type: precision_at_10
|
| 375 |
+
value: 38.545
|
| 376 |
+
- type: precision_at_100
|
| 377 |
+
value: 4.657
|
| 378 |
+
- type: precision_at_1000
|
| 379 |
+
value: 0.484
|
| 380 |
+
- type: precision_at_3
|
| 381 |
+
value: 69.18299999999999
|
| 382 |
+
- type: precision_at_5
|
| 383 |
+
value: 58.67
|
| 384 |
+
- type: recall_at_1
|
| 385 |
+
value: 22.328
|
| 386 |
+
- type: recall_at_10
|
| 387 |
+
value: 80.658
|
| 388 |
+
- type: recall_at_100
|
| 389 |
+
value: 94.093
|
| 390 |
+
- type: recall_at_1000
|
| 391 |
+
value: 98.137
|
| 392 |
+
- type: recall_at_3
|
| 393 |
+
value: 50.260000000000005
|
| 394 |
+
- type: recall_at_5
|
| 395 |
+
value: 66.045
|
| 396 |
+
- task:
|
| 397 |
+
type: Retrieval
|
| 398 |
+
dataset:
|
| 399 |
+
type: C-MTEB/EcomRetrieval
|
| 400 |
+
name: MTEB EcomRetrieval
|
| 401 |
+
config: default
|
| 402 |
+
split: dev
|
| 403 |
+
revision: None
|
| 404 |
+
metrics:
|
| 405 |
+
- type: map_at_1
|
| 406 |
+
value: 43.1
|
| 407 |
+
- type: map_at_10
|
| 408 |
+
value: 52.872
|
| 409 |
+
- type: map_at_100
|
| 410 |
+
value: 53.556000000000004
|
| 411 |
+
- type: map_at_1000
|
| 412 |
+
value: 53.583000000000006
|
| 413 |
+
- type: map_at_3
|
| 414 |
+
value: 50.14999999999999
|
| 415 |
+
- type: map_at_5
|
| 416 |
+
value: 51.925
|
| 417 |
+
- type: mrr_at_1
|
| 418 |
+
value: 43.1
|
| 419 |
+
- type: mrr_at_10
|
| 420 |
+
value: 52.872
|
| 421 |
+
- type: mrr_at_100
|
| 422 |
+
value: 53.556000000000004
|
| 423 |
+
- type: mrr_at_1000
|
| 424 |
+
value: 53.583000000000006
|
| 425 |
+
- type: mrr_at_3
|
| 426 |
+
value: 50.14999999999999
|
| 427 |
+
- type: mrr_at_5
|
| 428 |
+
value: 51.925
|
| 429 |
+
- type: ndcg_at_1
|
| 430 |
+
value: 43.1
|
| 431 |
+
- type: ndcg_at_10
|
| 432 |
+
value: 57.907
|
| 433 |
+
- type: ndcg_at_100
|
| 434 |
+
value: 61.517999999999994
|
| 435 |
+
- type: ndcg_at_1000
|
| 436 |
+
value: 62.175000000000004
|
| 437 |
+
- type: ndcg_at_3
|
| 438 |
+
value: 52.425
|
| 439 |
+
- type: ndcg_at_5
|
| 440 |
+
value: 55.631
|
| 441 |
+
- type: precision_at_1
|
| 442 |
+
value: 43.1
|
| 443 |
+
- type: precision_at_10
|
| 444 |
+
value: 7.380000000000001
|
| 445 |
+
- type: precision_at_100
|
| 446 |
+
value: 0.9129999999999999
|
| 447 |
+
- type: precision_at_1000
|
| 448 |
+
value: 0.096
|
| 449 |
+
- type: precision_at_3
|
| 450 |
+
value: 19.667
|
| 451 |
+
- type: precision_at_5
|
| 452 |
+
value: 13.36
|
| 453 |
+
- type: recall_at_1
|
| 454 |
+
value: 43.1
|
| 455 |
+
- type: recall_at_10
|
| 456 |
+
value: 73.8
|
| 457 |
+
- type: recall_at_100
|
| 458 |
+
value: 91.3
|
| 459 |
+
- type: recall_at_1000
|
| 460 |
+
value: 96.39999999999999
|
| 461 |
+
- type: recall_at_3
|
| 462 |
+
value: 59.0
|
| 463 |
+
- type: recall_at_5
|
| 464 |
+
value: 66.8
|
| 465 |
+
- task:
|
| 466 |
+
type: Classification
|
| 467 |
+
dataset:
|
| 468 |
+
type: C-MTEB/IFlyTek-classification
|
| 469 |
+
name: MTEB IFlyTek
|
| 470 |
+
config: default
|
| 471 |
+
split: validation
|
| 472 |
+
revision: None
|
| 473 |
+
metrics:
|
| 474 |
+
- type: accuracy
|
| 475 |
+
value: 41.146594844170835
|
| 476 |
+
- type: f1
|
| 477 |
+
value: 28.544218732704845
|
| 478 |
+
- task:
|
| 479 |
+
type: Classification
|
| 480 |
+
dataset:
|
| 481 |
+
type: C-MTEB/JDReview-classification
|
| 482 |
+
name: MTEB JDReview
|
| 483 |
+
config: default
|
| 484 |
+
split: test
|
| 485 |
+
revision: None
|
| 486 |
+
metrics:
|
| 487 |
+
- type: accuracy
|
| 488 |
+
value: 82.83302063789868
|
| 489 |
+
- type: ap
|
| 490 |
+
value: 48.881798834997056
|
| 491 |
+
- type: f1
|
| 492 |
+
value: 77.28655923994657
|
| 493 |
+
- task:
|
| 494 |
+
type: STS
|
| 495 |
+
dataset:
|
| 496 |
+
type: C-MTEB/LCQMC
|
| 497 |
+
name: MTEB LCQMC
|
| 498 |
+
config: default
|
| 499 |
+
split: test
|
| 500 |
+
revision: None
|
| 501 |
+
metrics:
|
| 502 |
+
- type: cos_sim_pearson
|
| 503 |
+
value: 66.05467125345538
|
| 504 |
+
- type: cos_sim_spearman
|
| 505 |
+
value: 72.71921060562211
|
| 506 |
+
- type: euclidean_pearson
|
| 507 |
+
value: 71.28539457113986
|
| 508 |
+
- type: euclidean_spearman
|
| 509 |
+
value: 72.71920173126693
|
| 510 |
+
- type: manhattan_pearson
|
| 511 |
+
value: 71.23750818174456
|
| 512 |
+
- type: manhattan_spearman
|
| 513 |
+
value: 72.61025268693467
|
| 514 |
+
- task:
|
| 515 |
+
type: Reranking
|
| 516 |
+
dataset:
|
| 517 |
+
type: C-MTEB/Mmarco-reranking
|
| 518 |
+
name: MTEB MMarcoReranking
|
| 519 |
+
config: default
|
| 520 |
+
split: dev
|
| 521 |
+
revision: None
|
| 522 |
+
metrics:
|
| 523 |
+
- type: map
|
| 524 |
+
value: 26.127712982639483
|
| 525 |
+
- type: mrr
|
| 526 |
+
value: 24.87420634920635
|
| 527 |
+
- task:
|
| 528 |
+
type: Retrieval
|
| 529 |
+
dataset:
|
| 530 |
+
type: C-MTEB/MMarcoRetrieval
|
| 531 |
+
name: MTEB MMarcoRetrieval
|
| 532 |
+
config: default
|
| 533 |
+
split: dev
|
| 534 |
+
revision: None
|
| 535 |
+
metrics:
|
| 536 |
+
- type: map_at_1
|
| 537 |
+
value: 62.517
|
| 538 |
+
- type: map_at_10
|
| 539 |
+
value: 71.251
|
| 540 |
+
- type: map_at_100
|
| 541 |
+
value: 71.647
|
| 542 |
+
- type: map_at_1000
|
| 543 |
+
value: 71.665
|
| 544 |
+
- type: map_at_3
|
| 545 |
+
value: 69.28
|
| 546 |
+
- type: map_at_5
|
| 547 |
+
value: 70.489
|
| 548 |
+
- type: mrr_at_1
|
| 549 |
+
value: 64.613
|
| 550 |
+
- type: mrr_at_10
|
| 551 |
+
value: 71.89
|
| 552 |
+
- type: mrr_at_100
|
| 553 |
+
value: 72.243
|
| 554 |
+
- type: mrr_at_1000
|
| 555 |
+
value: 72.259
|
| 556 |
+
- type: mrr_at_3
|
| 557 |
+
value: 70.138
|
| 558 |
+
- type: mrr_at_5
|
| 559 |
+
value: 71.232
|
| 560 |
+
- type: ndcg_at_1
|
| 561 |
+
value: 64.613
|
| 562 |
+
- type: ndcg_at_10
|
| 563 |
+
value: 75.005
|
| 564 |
+
- type: ndcg_at_100
|
| 565 |
+
value: 76.805
|
| 566 |
+
- type: ndcg_at_1000
|
| 567 |
+
value: 77.281
|
| 568 |
+
- type: ndcg_at_3
|
| 569 |
+
value: 71.234
|
| 570 |
+
- type: ndcg_at_5
|
| 571 |
+
value: 73.294
|
| 572 |
+
- type: precision_at_1
|
| 573 |
+
value: 64.613
|
| 574 |
+
- type: precision_at_10
|
| 575 |
+
value: 9.142
|
| 576 |
+
- type: precision_at_100
|
| 577 |
+
value: 1.004
|
| 578 |
+
- type: precision_at_1000
|
| 579 |
+
value: 0.104
|
| 580 |
+
- type: precision_at_3
|
| 581 |
+
value: 26.781
|
| 582 |
+
- type: precision_at_5
|
| 583 |
+
value: 17.149
|
| 584 |
+
- type: recall_at_1
|
| 585 |
+
value: 62.517
|
| 586 |
+
- type: recall_at_10
|
| 587 |
+
value: 85.997
|
| 588 |
+
- type: recall_at_100
|
| 589 |
+
value: 94.18299999999999
|
| 590 |
+
- type: recall_at_1000
|
| 591 |
+
value: 97.911
|
| 592 |
+
- type: recall_at_3
|
| 593 |
+
value: 75.993
|
| 594 |
+
- type: recall_at_5
|
| 595 |
+
value: 80.88300000000001
|
| 596 |
+
- task:
|
| 597 |
+
type: Classification
|
| 598 |
+
dataset:
|
| 599 |
+
type: mteb/amazon_massive_intent
|
| 600 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
| 601 |
+
config: zh-CN
|
| 602 |
+
split: test
|
| 603 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
| 604 |
+
metrics:
|
| 605 |
+
- type: accuracy
|
| 606 |
+
value: 59.27706792199058
|
| 607 |
+
- type: f1
|
| 608 |
+
value: 56.77545011902468
|
| 609 |
+
- task:
|
| 610 |
+
type: Classification
|
| 611 |
+
dataset:
|
| 612 |
+
type: mteb/amazon_massive_scenario
|
| 613 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
| 614 |
+
config: zh-CN
|
| 615 |
+
split: test
|
| 616 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
| 617 |
+
metrics:
|
| 618 |
+
- type: accuracy
|
| 619 |
+
value: 66.47948890383321
|
| 620 |
+
- type: f1
|
| 621 |
+
value: 66.4502180376861
|
| 622 |
+
- task:
|
| 623 |
+
type: Retrieval
|
| 624 |
+
dataset:
|
| 625 |
+
type: C-MTEB/MedicalRetrieval
|
| 626 |
+
name: MTEB MedicalRetrieval
|
| 627 |
+
config: default
|
| 628 |
+
split: dev
|
| 629 |
+
revision: None
|
| 630 |
+
metrics:
|
| 631 |
+
- type: map_at_1
|
| 632 |
+
value: 54.2
|
| 633 |
+
- type: map_at_10
|
| 634 |
+
value: 59.858
|
| 635 |
+
- type: map_at_100
|
| 636 |
+
value: 60.46
|
| 637 |
+
- type: map_at_1000
|
| 638 |
+
value: 60.507
|
| 639 |
+
- type: map_at_3
|
| 640 |
+
value: 58.416999999999994
|
| 641 |
+
- type: map_at_5
|
| 642 |
+
value: 59.331999999999994
|
| 643 |
+
- type: mrr_at_1
|
| 644 |
+
value: 54.2
|
| 645 |
+
- type: mrr_at_10
|
| 646 |
+
value: 59.862
|
| 647 |
+
- type: mrr_at_100
|
| 648 |
+
value: 60.463
|
| 649 |
+
- type: mrr_at_1000
|
| 650 |
+
value: 60.51
|
| 651 |
+
- type: mrr_at_3
|
| 652 |
+
value: 58.416999999999994
|
| 653 |
+
- type: mrr_at_5
|
| 654 |
+
value: 59.352000000000004
|
| 655 |
+
- type: ndcg_at_1
|
| 656 |
+
value: 54.2
|
| 657 |
+
- type: ndcg_at_10
|
| 658 |
+
value: 62.643
|
| 659 |
+
- type: ndcg_at_100
|
| 660 |
+
value: 65.731
|
| 661 |
+
- type: ndcg_at_1000
|
| 662 |
+
value: 67.096
|
| 663 |
+
- type: ndcg_at_3
|
| 664 |
+
value: 59.727
|
| 665 |
+
- type: ndcg_at_5
|
| 666 |
+
value: 61.375
|
| 667 |
+
- type: precision_at_1
|
| 668 |
+
value: 54.2
|
| 669 |
+
- type: precision_at_10
|
| 670 |
+
value: 7.140000000000001
|
| 671 |
+
- type: precision_at_100
|
| 672 |
+
value: 0.8619999999999999
|
| 673 |
+
- type: precision_at_1000
|
| 674 |
+
value: 0.097
|
| 675 |
+
- type: precision_at_3
|
| 676 |
+
value: 21.166999999999998
|
| 677 |
+
- type: precision_at_5
|
| 678 |
+
value: 13.5
|
| 679 |
+
- type: recall_at_1
|
| 680 |
+
value: 54.2
|
| 681 |
+
- type: recall_at_10
|
| 682 |
+
value: 71.39999999999999
|
| 683 |
+
- type: recall_at_100
|
| 684 |
+
value: 86.2
|
| 685 |
+
- type: recall_at_1000
|
| 686 |
+
value: 97.2
|
| 687 |
+
- type: recall_at_3
|
| 688 |
+
value: 63.5
|
| 689 |
+
- type: recall_at_5
|
| 690 |
+
value: 67.5
|
| 691 |
+
- task:
|
| 692 |
+
type: Classification
|
| 693 |
+
dataset:
|
| 694 |
+
type: C-MTEB/MultilingualSentiment-classification
|
| 695 |
+
name: MTEB MultilingualSentiment
|
| 696 |
+
config: default
|
| 697 |
+
split: validation
|
| 698 |
+
revision: None
|
| 699 |
+
metrics:
|
| 700 |
+
- type: accuracy
|
| 701 |
+
value: 68.19666666666666
|
| 702 |
+
- type: f1
|
| 703 |
+
value: 67.58581661416034
|
| 704 |
+
- task:
|
| 705 |
+
type: PairClassification
|
| 706 |
+
dataset:
|
| 707 |
+
type: C-MTEB/OCNLI
|
| 708 |
+
name: MTEB Ocnli
|
| 709 |
+
config: default
|
| 710 |
+
split: validation
|
| 711 |
+
revision: None
|
| 712 |
+
metrics:
|
| 713 |
+
- type: cos_sim_accuracy
|
| 714 |
+
value: 60.530590146182995
|
| 715 |
+
- type: cos_sim_ap
|
| 716 |
+
value: 63.53656091243922
|
| 717 |
+
- type: cos_sim_f1
|
| 718 |
+
value: 68.09929603556874
|
| 719 |
+
- type: cos_sim_precision
|
| 720 |
+
value: 52.45433789954338
|
| 721 |
+
- type: cos_sim_recall
|
| 722 |
+
value: 97.04329461457233
|
| 723 |
+
- type: dot_accuracy
|
| 724 |
+
value: 60.530590146182995
|
| 725 |
+
- type: dot_ap
|
| 726 |
+
value: 63.53660452157237
|
| 727 |
+
- type: dot_f1
|
| 728 |
+
value: 68.09929603556874
|
| 729 |
+
- type: dot_precision
|
| 730 |
+
value: 52.45433789954338
|
| 731 |
+
- type: dot_recall
|
| 732 |
+
value: 97.04329461457233
|
| 733 |
+
- type: euclidean_accuracy
|
| 734 |
+
value: 60.530590146182995
|
| 735 |
+
- type: euclidean_ap
|
| 736 |
+
value: 63.53678735855631
|
| 737 |
+
- type: euclidean_f1
|
| 738 |
+
value: 68.09929603556874
|
| 739 |
+
- type: euclidean_precision
|
| 740 |
+
value: 52.45433789954338
|
| 741 |
+
- type: euclidean_recall
|
| 742 |
+
value: 97.04329461457233
|
| 743 |
+
- type: manhattan_accuracy
|
| 744 |
+
value: 60.47644829453167
|
| 745 |
+
- type: manhattan_ap
|
| 746 |
+
value: 63.5622508250315
|
| 747 |
+
- type: manhattan_f1
|
| 748 |
+
value: 68.1650700073692
|
| 749 |
+
- type: manhattan_precision
|
| 750 |
+
value: 52.34861346915677
|
| 751 |
+
- type: manhattan_recall
|
| 752 |
+
value: 97.67687434002113
|
| 753 |
+
- type: max_accuracy
|
| 754 |
+
value: 60.530590146182995
|
| 755 |
+
- type: max_ap
|
| 756 |
+
value: 63.5622508250315
|
| 757 |
+
- type: max_f1
|
| 758 |
+
value: 68.1650700073692
|
| 759 |
+
- task:
|
| 760 |
+
type: Classification
|
| 761 |
+
dataset:
|
| 762 |
+
type: C-MTEB/OnlineShopping-classification
|
| 763 |
+
name: MTEB OnlineShopping
|
| 764 |
+
config: default
|
| 765 |
+
split: test
|
| 766 |
+
revision: None
|
| 767 |
+
metrics:
|
| 768 |
+
- type: accuracy
|
| 769 |
+
value: 89.13
|
| 770 |
+
- type: ap
|
| 771 |
+
value: 87.21879260137172
|
| 772 |
+
- type: f1
|
| 773 |
+
value: 89.12359325300508
|
| 774 |
+
- task:
|
| 775 |
+
type: STS
|
| 776 |
+
dataset:
|
| 777 |
+
type: C-MTEB/PAWSX
|
| 778 |
+
name: MTEB PAWSX
|
| 779 |
+
config: default
|
| 780 |
+
split: test
|
| 781 |
+
revision: None
|
| 782 |
+
metrics:
|
| 783 |
+
- type: cos_sim_pearson
|
| 784 |
+
value: 12.035577637900758
|
| 785 |
+
- type: cos_sim_spearman
|
| 786 |
+
value: 12.76524190663864
|
| 787 |
+
- type: euclidean_pearson
|
| 788 |
+
value: 14.4012689427106
|
| 789 |
+
- type: euclidean_spearman
|
| 790 |
+
value: 12.765328992583608
|
| 791 |
+
- type: manhattan_pearson
|
| 792 |
+
value: 14.458505202938946
|
| 793 |
+
- type: manhattan_spearman
|
| 794 |
+
value: 12.763238700117896
|
| 795 |
+
- task:
|
| 796 |
+
type: STS
|
| 797 |
+
dataset:
|
| 798 |
+
type: C-MTEB/QBQTC
|
| 799 |
+
name: MTEB QBQTC
|
| 800 |
+
config: default
|
| 801 |
+
split: test
|
| 802 |
+
revision: None
|
| 803 |
+
metrics:
|
| 804 |
+
- type: cos_sim_pearson
|
| 805 |
+
value: 34.809415339934006
|
| 806 |
+
- type: cos_sim_spearman
|
| 807 |
+
value: 36.96728615916954
|
| 808 |
+
- type: euclidean_pearson
|
| 809 |
+
value: 35.56113673772396
|
| 810 |
+
- type: euclidean_spearman
|
| 811 |
+
value: 36.96842963389308
|
| 812 |
+
- type: manhattan_pearson
|
| 813 |
+
value: 35.5447066178264
|
| 814 |
+
- type: manhattan_spearman
|
| 815 |
+
value: 36.97514513480951
|
| 816 |
+
- task:
|
| 817 |
+
type: STS
|
| 818 |
+
dataset:
|
| 819 |
+
type: mteb/sts22-crosslingual-sts
|
| 820 |
+
name: MTEB STS22 (zh)
|
| 821 |
+
config: zh
|
| 822 |
+
split: test
|
| 823 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
| 824 |
+
metrics:
|
| 825 |
+
- type: cos_sim_pearson
|
| 826 |
+
value: 66.39448692338551
|
| 827 |
+
- type: cos_sim_spearman
|
| 828 |
+
value: 66.72211526923901
|
| 829 |
+
- type: euclidean_pearson
|
| 830 |
+
value: 65.72981824553035
|
| 831 |
+
- type: euclidean_spearman
|
| 832 |
+
value: 66.72211526923901
|
| 833 |
+
- type: manhattan_pearson
|
| 834 |
+
value: 65.52315559414296
|
| 835 |
+
- type: manhattan_spearman
|
| 836 |
+
value: 66.61931702511545
|
| 837 |
+
- task:
|
| 838 |
+
type: STS
|
| 839 |
+
dataset:
|
| 840 |
+
type: C-MTEB/STSB
|
| 841 |
+
name: MTEB STSB
|
| 842 |
+
config: default
|
| 843 |
+
split: test
|
| 844 |
+
revision: None
|
| 845 |
+
metrics:
|
| 846 |
+
- type: cos_sim_pearson
|
| 847 |
+
value: 76.73608064460915
|
| 848 |
+
- type: cos_sim_spearman
|
| 849 |
+
value: 76.51424826130031
|
| 850 |
+
- type: euclidean_pearson
|
| 851 |
+
value: 76.17930213372487
|
| 852 |
+
- type: euclidean_spearman
|
| 853 |
+
value: 76.51342756283478
|
| 854 |
+
- type: manhattan_pearson
|
| 855 |
+
value: 75.87085607319342
|
| 856 |
+
- type: manhattan_spearman
|
| 857 |
+
value: 76.22676341477134
|
| 858 |
+
- task:
|
| 859 |
+
type: Reranking
|
| 860 |
+
dataset:
|
| 861 |
+
type: C-MTEB/T2Reranking
|
| 862 |
+
name: MTEB T2Reranking
|
| 863 |
+
config: default
|
| 864 |
+
split: dev
|
| 865 |
+
revision: None
|
| 866 |
+
metrics:
|
| 867 |
+
- type: map
|
| 868 |
+
value: 65.38779931543048
|
| 869 |
+
- type: mrr
|
| 870 |
+
value: 74.79313763420059
|
| 871 |
+
- task:
|
| 872 |
+
type: Retrieval
|
| 873 |
+
dataset:
|
| 874 |
+
type: C-MTEB/T2Retrieval
|
| 875 |
+
name: MTEB T2Retrieval
|
| 876 |
+
config: default
|
| 877 |
+
split: dev
|
| 878 |
+
revision: None
|
| 879 |
+
metrics:
|
| 880 |
+
- type: map_at_1
|
| 881 |
+
value: 25.131999999999998
|
| 882 |
+
- type: map_at_10
|
| 883 |
+
value: 69.131
|
| 884 |
+
- type: map_at_100
|
| 885 |
+
value: 72.943
|
| 886 |
+
- type: map_at_1000
|
| 887 |
+
value: 73.045
|
| 888 |
+
- type: map_at_3
|
| 889 |
+
value: 48.847
|
| 890 |
+
- type: map_at_5
|
| 891 |
+
value: 59.842
|
| 892 |
+
- type: mrr_at_1
|
| 893 |
+
value: 85.516
|
| 894 |
+
- type: mrr_at_10
|
| 895 |
+
value: 88.863
|
| 896 |
+
- type: mrr_at_100
|
| 897 |
+
value: 88.996
|
| 898 |
+
- type: mrr_at_1000
|
| 899 |
+
value: 89.00099999999999
|
| 900 |
+
- type: mrr_at_3
|
| 901 |
+
value: 88.277
|
| 902 |
+
- type: mrr_at_5
|
| 903 |
+
value: 88.64800000000001
|
| 904 |
+
- type: ndcg_at_1
|
| 905 |
+
value: 85.516
|
| 906 |
+
- type: ndcg_at_10
|
| 907 |
+
value: 78.122
|
| 908 |
+
- type: ndcg_at_100
|
| 909 |
+
value: 82.673
|
| 910 |
+
- type: ndcg_at_1000
|
| 911 |
+
value: 83.707
|
| 912 |
+
- type: ndcg_at_3
|
| 913 |
+
value: 80.274
|
| 914 |
+
- type: ndcg_at_5
|
| 915 |
+
value: 78.405
|
| 916 |
+
- type: precision_at_1
|
| 917 |
+
value: 85.516
|
| 918 |
+
- type: precision_at_10
|
| 919 |
+
value: 38.975
|
| 920 |
+
- type: precision_at_100
|
| 921 |
+
value: 4.833
|
| 922 |
+
- type: precision_at_1000
|
| 923 |
+
value: 0.509
|
| 924 |
+
- type: precision_at_3
|
| 925 |
+
value: 70.35
|
| 926 |
+
- type: precision_at_5
|
| 927 |
+
value: 58.638
|
| 928 |
+
- type: recall_at_1
|
| 929 |
+
value: 25.131999999999998
|
| 930 |
+
- type: recall_at_10
|
| 931 |
+
value: 76.848
|
| 932 |
+
- type: recall_at_100
|
| 933 |
+
value: 91.489
|
| 934 |
+
- type: recall_at_1000
|
| 935 |
+
value: 96.709
|
| 936 |
+
- type: recall_at_3
|
| 937 |
+
value: 50.824000000000005
|
| 938 |
+
- type: recall_at_5
|
| 939 |
+
value: 63.89
|
| 940 |
+
- task:
|
| 941 |
+
type: Classification
|
| 942 |
+
dataset:
|
| 943 |
+
type: C-MTEB/TNews-classification
|
| 944 |
+
name: MTEB TNews
|
| 945 |
+
config: default
|
| 946 |
+
split: validation
|
| 947 |
+
revision: None
|
| 948 |
+
metrics:
|
| 949 |
+
- type: accuracy
|
| 950 |
+
value: 49.65
|
| 951 |
+
- type: f1
|
| 952 |
+
value: 47.66791473245483
|
| 953 |
+
- task:
|
| 954 |
+
type: Clustering
|
| 955 |
+
dataset:
|
| 956 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
| 957 |
+
name: MTEB ThuNewsClusteringP2P
|
| 958 |
+
config: default
|
| 959 |
+
split: test
|
| 960 |
+
revision: None
|
| 961 |
+
metrics:
|
| 962 |
+
- type: v_measure
|
| 963 |
+
value: 63.78843565968542
|
| 964 |
+
- task:
|
| 965 |
+
type: Clustering
|
| 966 |
+
dataset:
|
| 967 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
| 968 |
+
name: MTEB ThuNewsClusteringS2S
|
| 969 |
+
config: default
|
| 970 |
+
split: test
|
| 971 |
+
revision: None
|
| 972 |
+
metrics:
|
| 973 |
+
- type: v_measure
|
| 974 |
+
value: 55.14095244943176
|
| 975 |
+
- task:
|
| 976 |
+
type: Retrieval
|
| 977 |
+
dataset:
|
| 978 |
+
type: C-MTEB/VideoRetrieval
|
| 979 |
+
name: MTEB VideoRetrieval
|
| 980 |
+
config: default
|
| 981 |
+
split: dev
|
| 982 |
+
revision: None
|
| 983 |
+
metrics:
|
| 984 |
+
- type: map_at_1
|
| 985 |
+
value: 53.800000000000004
|
| 986 |
+
- type: map_at_10
|
| 987 |
+
value: 63.312000000000005
|
| 988 |
+
- type: map_at_100
|
| 989 |
+
value: 63.93600000000001
|
| 990 |
+
- type: map_at_1000
|
| 991 |
+
value: 63.955
|
| 992 |
+
- type: map_at_3
|
| 993 |
+
value: 61.283
|
| 994 |
+
- type: map_at_5
|
| 995 |
+
value: 62.553000000000004
|
| 996 |
+
- type: mrr_at_1
|
| 997 |
+
value: 53.800000000000004
|
| 998 |
+
- type: mrr_at_10
|
| 999 |
+
value: 63.312000000000005
|
| 1000 |
+
- type: mrr_at_100
|
| 1001 |
+
value: 63.93600000000001
|
| 1002 |
+
- type: mrr_at_1000
|
| 1003 |
+
value: 63.955
|
| 1004 |
+
- type: mrr_at_3
|
| 1005 |
+
value: 61.283
|
| 1006 |
+
- type: mrr_at_5
|
| 1007 |
+
value: 62.553000000000004
|
| 1008 |
+
- type: ndcg_at_1
|
| 1009 |
+
value: 53.800000000000004
|
| 1010 |
+
- type: ndcg_at_10
|
| 1011 |
+
value: 67.693
|
| 1012 |
+
- type: ndcg_at_100
|
| 1013 |
+
value: 70.552
|
| 1014 |
+
- type: ndcg_at_1000
|
| 1015 |
+
value: 71.06099999999999
|
| 1016 |
+
- type: ndcg_at_3
|
| 1017 |
+
value: 63.632
|
| 1018 |
+
- type: ndcg_at_5
|
| 1019 |
+
value: 65.90899999999999
|
| 1020 |
+
- type: precision_at_1
|
| 1021 |
+
value: 53.800000000000004
|
| 1022 |
+
- type: precision_at_10
|
| 1023 |
+
value: 8.129999999999999
|
| 1024 |
+
- type: precision_at_100
|
| 1025 |
+
value: 0.943
|
| 1026 |
+
- type: precision_at_1000
|
| 1027 |
+
value: 0.098
|
| 1028 |
+
- type: precision_at_3
|
| 1029 |
+
value: 23.467
|
| 1030 |
+
- type: precision_at_5
|
| 1031 |
+
value: 15.18
|
| 1032 |
+
- type: recall_at_1
|
| 1033 |
+
value: 53.800000000000004
|
| 1034 |
+
- type: recall_at_10
|
| 1035 |
+
value: 81.3
|
| 1036 |
+
- type: recall_at_100
|
| 1037 |
+
value: 94.3
|
| 1038 |
+
- type: recall_at_1000
|
| 1039 |
+
value: 98.3
|
| 1040 |
+
- type: recall_at_3
|
| 1041 |
+
value: 70.39999999999999
|
| 1042 |
+
- type: recall_at_5
|
| 1043 |
+
value: 75.9
|
| 1044 |
+
- task:
|
| 1045 |
+
type: Classification
|
| 1046 |
+
dataset:
|
| 1047 |
+
type: C-MTEB/waimai-classification
|
| 1048 |
+
name: MTEB Waimai
|
| 1049 |
+
config: default
|
| 1050 |
+
split: test
|
| 1051 |
+
revision: None
|
| 1052 |
+
metrics:
|
| 1053 |
+
- type: accuracy
|
| 1054 |
+
value: 84.96000000000001
|
| 1055 |
+
- type: ap
|
| 1056 |
+
value: 66.89917287702019
|
| 1057 |
+
- type: f1
|
| 1058 |
+
value: 83.0239988458119
|
| 1059 |
+
language:
|
| 1060 |
+
- en
|
| 1061 |
license: mit
|
| 1062 |
---
|
| 1063 |
+
|
| 1064 |
+
# gte-small-zh
|
| 1065 |
+
|
| 1066 |
+
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
|
| 1067 |
+
|
| 1068 |
+
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer different sizes of models for both Chinese and English Languages. The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
|
| 1069 |
+
|
| 1070 |
+
## Model List
|
| 1071 |
+
|
| 1072 |
+
| Models | Language | Max Sequence Length | Dimension | Model Size |
|
| 1073 |
+
|:-----: | :-----: |:-----: |:-----: |:-----: |
|
| 1074 |
+
|[GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh) | Chinese | 512 | 1024 | 0.67GB |
|
| 1075 |
+
|[GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.21GB |
|
| 1076 |
+
|[GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.10GB |
|
| 1077 |
+
|[GTE-large](https://huggingface.co/thenlper/gte-large) | English | 512 | 1024 | 0.67GB |
|
| 1078 |
+
|[GTE-base](https://huggingface.co/thenlper/gte-base) | English | 512 | 512 | 0.21GB |
|
| 1079 |
+
|[GTE-small](https://huggingface.co/thenlper/gte-small) | English | 512 | 384 | 0.10GB |
|
| 1080 |
+
|
| 1081 |
+
## Metrics
|
| 1082 |
+
|
| 1083 |
+
We compared the performance of the GTE models with other popular text embedding models on the MTEB (CMTEB for Chinese language) benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
|
| 1084 |
+
|
| 1085 |
+
- Evaluation results on CMTEB
|
| 1086 |
+
|
| 1087 |
+
| Model | Model Size (GB) | Embedding Dimensions | Sequence Length | Average (35 datasets) | Classification (9 datasets) | Clustering (4 datasets) | Pair Classification (2 datasets) | Reranking (4 datasets) | Retrieval (8 datasets) | STS (8 datasets) |
|
| 1088 |
+
| ------------------- | -------------- | -------------------- | ---------------- | --------------------- | ------------------------------------ | ------------------------------ | --------------------------------------- | ------------------------------ | ---------------------------- | ------------------------ |
|
| 1089 |
+
| **gte-large-zh** | 0.65 | 1024 | 512 | **66.72** | 71.34 | 53.07 | 81.14 | 67.42 | 72.49 | 57.82 |
|
| 1090 |
+
| gte-base-zh | 0.20 | 768 | 512 | 65.92 | 71.26 | 53.86 | 80.44 | 67.00 | 71.71 | 55.96 |
|
| 1091 |
+
| stella-large-zh-v2 | 0.65 | 1024 | 1024 | 65.13 | 69.05 | 49.16 | 82.68 | 66.41 | 70.14 | 58.66 |
|
| 1092 |
+
| stella-large-zh | 0.65 | 1024 | 1024 | 64.54 | 67.62 | 48.65 | 78.72 | 65.98 | 71.02 | 58.3 |
|
| 1093 |
+
| bge-large-zh-v1.5 | 1.3 | 1024 | 512 | 64.53 | 69.13 | 48.99 | 81.6 | 65.84 | 70.46 | 56.25 |
|
| 1094 |
+
| stella-base-zh-v2 | 0.21 | 768 | 1024 | 64.36 | 68.29 | 49.4 | 79.96 | 66.1 | 70.08 | 56.92 |
|
| 1095 |
+
| stella-base-zh | 0.21 | 768 | 1024 | 64.16 | 67.77 | 48.7 | 76.09 | 66.95 | 71.07 | 56.54 |
|
| 1096 |
+
| piccolo-large-zh | 0.65 | 1024 | 512 | 64.11 | 67.03 | 47.04 | 78.38 | 65.98 | 70.93 | 58.02 |
|
| 1097 |
+
| piccolo-base-zh | 0.2 | 768 | 512 | 63.66 | 66.98 | 47.12 | 76.61 | 66.68 | 71.2 | 55.9 |
|
| 1098 |
+
| gte-small-zh | 0.1 | 512 | 512 | 60.04 | 64.35 | 48.95 | 69.99 | 66.21 | 65.50 | 49.72 |
|
| 1099 |
+
| bge-small-zh-v1.5 | 0.1 | 512 | 512 | 57.82 | 63.96 | 44.18 | 70.4 | 60.92 | 61.77 | 49.1 |
|
| 1100 |
+
| m3e-base | 0.41 | 768 | 512 | 57.79 | 67.52 | 47.68 | 63.99 | 59.54| 56.91 | 50.47 |
|
| 1101 |
+
|text-embedding-ada-002(openai) | - | 1536| 8192 | 53.02 | 64.31 | 45.68 | 69.56 | 54.28 | 52.0 | 43.35 |
|
| 1102 |
+
|
| 1103 |
+
|
| 1104 |
+
## Usage
|
| 1105 |
+
|
| 1106 |
+
Code example
|
| 1107 |
+
|
| 1108 |
+
```python
|
| 1109 |
+
import torch.nn.functional as F
|
| 1110 |
+
from torch import Tensor
|
| 1111 |
+
from transformers import AutoTokenizer, AutoModel
|
| 1112 |
+
|
| 1113 |
+
input_texts = [
|
| 1114 |
+
"中国的首都是哪里",
|
| 1115 |
+
"你喜欢去哪里旅游",
|
| 1116 |
+
"北京",
|
| 1117 |
+
"今天中午吃什么"
|
| 1118 |
+
]
|
| 1119 |
+
|
| 1120 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small-zh")
|
| 1121 |
+
model = AutoModel.from_pretrained("thenlper/gte-small-zh")
|
| 1122 |
+
|
| 1123 |
+
# Tokenize the input texts
|
| 1124 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
| 1125 |
+
|
| 1126 |
+
outputs = model(**batch_dict)
|
| 1127 |
+
embeddings = outputs.last_hidden_state[:, 0]
|
| 1128 |
+
|
| 1129 |
+
# (Optionally) normalize embeddings
|
| 1130 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
| 1131 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
| 1132 |
+
print(scores.tolist())
|
| 1133 |
+
```
|
| 1134 |
+
|
| 1135 |
+
Use with sentence-transformers:
|
| 1136 |
+
|
| 1137 |
+
```python
|
| 1138 |
+
from sentence_transformers import SentenceTransformer
|
| 1139 |
+
from sentence_transformers.util import cos_sim
|
| 1140 |
+
|
| 1141 |
+
sentences = ['That is a happy person', 'That is a very happy person']
|
| 1142 |
+
|
| 1143 |
+
model = SentenceTransformer('thenlper/gte-small-zh')
|
| 1144 |
+
embeddings = model.encode(sentences)
|
| 1145 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
| 1146 |
+
```
|
| 1147 |
+
|
| 1148 |
+
### Limitation
|
| 1149 |
+
|
| 1150 |
+
This model exclusively caters to Chinese texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
|
| 1151 |
+
|
| 1152 |
+
### Citation
|
| 1153 |
+
|
| 1154 |
+
If you find our paper or models helpful, please consider citing them as follows:
|
| 1155 |
+
|
| 1156 |
+
```
|
| 1157 |
+
@misc{li2023general,
|
| 1158 |
+
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
| 1159 |
+
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
|
| 1160 |
+
year={2023},
|
| 1161 |
+
eprint={2308.03281},
|
| 1162 |
+
archivePrefix={arXiv},
|
| 1163 |
+
primaryClass={cs.CL}
|
| 1164 |
+
}
|
| 1165 |
+
```
|