""" Layer 6: Geopolitical & Social Response ====================================== Models geopolitical and social responses using transformer-based NLP and scenario analysis. """ from typing import Dict, Any, Optional from dataclasses import dataclass from ..config.layer_configs import GeopoliticalConfig @dataclass class GeopoliticalImpact: """Geopolitical impact prediction""" social_sentiment: Dict[str, float] protest_risk: Dict[str, float] diplomatic_actions: Dict[str, str] media_coverage: Dict[str, float] class GeopoliticalLayer: """Layer 6: Geopolitical & Social Response""" def __init__(self, config: GeopoliticalConfig): self.config = config self.is_fitted = False def fit(self, geopolitical_data: Optional[Any]) -> "GeopoliticalLayer": """Train geopolitical response models""" self.is_fitted = True return self def predict(self, consumer_impact) -> GeopoliticalImpact: """Predict geopolitical and social responses""" if not self.is_fitted: raise ValueError("Layer must be fitted before prediction") # Simulate geopolitical impacts social_sentiment = {} protest_risk = {} diplomatic_actions = {} media_coverage = {} # Placeholder logic for sector in getattr(consumer_impact, "welfare_effects", {}): welfare_loss = consumer_impact.welfare_effects[sector] social_sentiment[sector] = max(-1.0, min(1.0, -welfare_loss * 0.1)) protest_risk[sector] = max(0.0, min(1.0, welfare_loss * 0.05)) diplomatic_actions[sector] = ( "monitor" if protest_risk[sector] > 0.2 else "none" ) media_coverage[sector] = abs(welfare_loss) * 0.2 return GeopoliticalImpact( social_sentiment=social_sentiment, protest_risk=protest_risk, diplomatic_actions=diplomatic_actions, media_coverage=media_coverage, )