""" Core TIPM Model Implementation ============================= Main orchestrator for the Tariff Impact Propagation Model """ from typing import Dict, List, Any, Optional import logging from dataclasses import dataclass from dataclasses import dataclass from typing import Dict, List, Optional, Set from datetime import datetime @dataclass class EnhancedCountryData: """Enhanced country data structure for v1.5 with authoritative classifications""" # Core identification name: str iso_alpha_2: str iso_alpha_3: str un_code: str # Trade & Economic Data tariff_rate: float bilateral_trade_usd: float gdp_usd: float gdp_per_capita: float # Geographic Classification continent: str region: str income_group: str # Global Organization Memberships global_groups: Set[str] trade_agreements: Set[str] currency_bloc: Optional[str] # New Economic Categories (v1.5) emerging_market_status: bool tech_manufacturing_rank: Optional[int] supply_chain_critical: bool # Resource Export Classifications mining_resource_exports: List[str] agricultural_exports: List[str] strategic_commodities: List[str] # Data Provenance (v1.5 requirement) data_sources: Dict[str, str] last_updated: datetime confidence_level: str def validate(self) -> bool: """Validate country data fields and bounds.""" if not 0 <= self.tariff_rate <= 100: raise ValueError( f"Invalid tariff_rate for {self.name}: {self.tariff_rate}%. Must be 0-100%" ) if self.gdp_usd < 0: raise ValueError(f"Negative GDP for {self.name}: {self.gdp_usd}") if self.gdp_per_capita < 0: raise ValueError( f"Negative GDP per capita for {self.name}: {self.gdp_per_capita}" ) return True # Placeholder for country database loader and validation framework # To be implemented in next steps import pandas as pd from .layers.policy_trigger import PolicyTriggerLayer from .layers.trade_flow import TradeFlowLayer from .layers.industry_response import IndustryResponseLayer from .layers.firm_impact import FirmImpactLayer from .layers.consumer_impact import ConsumerImpactLayer from .layers.geopolitical import GeopoliticalLayer from .config.settings import ( TIPMConfig, PolicyLayerConfig, TradeFlowConfig, IndustryConfig, FirmConfig, ConsumerConfig, GeopoliticalConfig, ) @dataclass @dataclass class TariffShock: """Represents a tariff policy change""" tariff_id: str hs_codes: List[str] rate_change: float origin_country: str destination_country: str effective_date: str policy_text: str @dataclass class TIPMPrediction: """Model prediction output structure""" tariff_shock: TariffShock trade_flow_impact: Dict[str, Any] industry_response: Dict[str, Any] firm_impact: Dict[str, Any] consumer_impact: Dict[str, Any] geopolitical_impact: Dict[str, Any] confidence_scores: Dict[str, float] class TIPMModel: """ Main TIPM Model Class Orchestrates the 6-layer architecture for tariff impact prediction: 1. Policy Trigger Input (tariff shock processing) 2. Upstream Trade Flow Modeling 3. Industry-Level Economic Response 4. Firm-Level & Employment Impact 5. Consumer Market Impact 6. Geopolitical & Social Feedback """ def __init__(self, config: Optional[TIPMConfig] = None): """Initialize TIPM model with configuration""" self.config = config or TIPMConfig() self.logger = logging.getLogger(__name__) # Initialize model layers self._initialize_layers() # Model state self.is_trained = False self.model_metadata = {} def _initialize_layers(self): """Initialize all 6 model layers""" # Use default configs if none provided policy_config = self.config.policy_config or PolicyLayerConfig() trade_flow_config = self.config.trade_flow_config or TradeFlowConfig() industry_config = self.config.industry_config or IndustryConfig() firm_config = self.config.firm_config or FirmConfig() consumer_config = self.config.consumer_config or ConsumerConfig() geopolitical_config = self.config.geopolitical_config or GeopoliticalConfig() self.policy_layer = PolicyTriggerLayer(policy_config) self.trade_flow_layer = TradeFlowLayer(trade_flow_config) self.industry_layer = IndustryResponseLayer(industry_config) self.firm_layer = FirmImpactLayer(firm_config) self.consumer_layer = ConsumerImpactLayer(consumer_config) self.geopolitical_layer = GeopoliticalLayer(geopolitical_config) self.logger.info("TIPM model layers initialized successfully") def fit(self, training_data: Dict[str, pd.DataFrame]) -> "TIPMModel": """ Train the TIPM model on historical data Args: training_data: Dictionary containing training datasets for each layer - 'tariff_shocks': Historical tariff policy changes - 'trade_flows': Historical trade flow data - 'industry_responses': Industry-level response data - 'firm_responses': Firm-level response data - 'consumer_impacts': Consumer market impact data - 'geopolitical_events': Social/political response data """ self.logger.info("Starting TIPM model training...") # Train each layer sequentially self.policy_layer.fit(training_data.get("tariff_shocks")) self.trade_flow_layer.fit(training_data.get("trade_flows")) self.industry_layer.fit(training_data.get("industry_responses")) self.firm_layer.fit(training_data.get("firm_responses")) self.consumer_layer.fit(training_data.get("consumer_impacts")) self.geopolitical_layer.fit(training_data.get("geopolitical_events")) self.is_trained = True self.logger.info("TIPM model training completed") return self def predict(self, tariff_shock: TariffShock) -> TIPMPrediction: """ Predict tariff impact propagation through all layers Args: tariff_shock: Tariff policy change to analyze Returns: TIPMPrediction: Comprehensive impact prediction """ if not self.is_trained: raise ValueError("Model must be trained before making predictions") self.logger.info( f"Predicting impact for tariff shock: {tariff_shock.tariff_id}" ) # Layer 1: Process policy trigger policy_features = self.policy_layer.transform(tariff_shock) # Layer 2: Trade flow impact trade_impact = self.trade_flow_layer.predict(policy_features) # Layer 3: Industry response industry_impact = self.industry_layer.predict(trade_impact) # Layer 4: Firm-level impact firm_impact = self.firm_layer.predict(industry_impact) # Layer 5: Consumer impact consumer_impact = self.consumer_layer.predict(firm_impact) # Layer 6: Geopolitical feedback geopolitical_impact = self.geopolitical_layer.predict(consumer_impact) # Calculate confidence scores confidence_scores = self._calculate_confidence_scores( policy_features, trade_impact, industry_impact, firm_impact, consumer_impact, geopolitical_impact, ) return TIPMPrediction( tariff_shock=tariff_shock, trade_flow_impact=trade_impact, industry_response=industry_impact, firm_impact=firm_impact, consumer_impact=consumer_impact, geopolitical_impact=geopolitical_impact, confidence_scores=confidence_scores, ) def _calculate_confidence_scores(self, *layer_outputs) -> Dict[str, float]: """Calculate prediction confidence scores for each layer""" # Implementation placeholder - would calculate based on model uncertainties return { "policy_confidence": 0.85, "trade_flow_confidence": 0.78, "industry_confidence": 0.82, "firm_confidence": 0.73, "consumer_confidence": 0.79, "geopolitical_confidence": 0.65, "overall_confidence": 0.77, } def simulate_scenario( self, tariff_shocks: List[TariffShock], time_horizon: int = 12 ) -> Dict[str, Any]: """ Run scenario simulation with multiple tariff shocks over time Args: tariff_shocks: List of tariff policy changes time_horizon: Simulation time horizon in months Returns: Dictionary containing simulation results """ self.logger.info( f"Running scenario simulation with {len(tariff_shocks)} shocks" ) scenario_results = { "timeline": [], "cumulative_impacts": {}, "country_impacts": {}, "sector_impacts": {}, } for shock in tariff_shocks: prediction = self.predict(shock) scenario_results["timeline"].append( {"shock": shock, "prediction": prediction} ) return scenario_results def get_country_exposure(self, country_code: str) -> Dict[str, Any]: """ Get tariff exposure profile for a specific country Args: country_code: ISO country code (e.g., 'SG', 'US', 'CN') Returns: Dictionary containing country-specific exposure metrics """ # Implementation would analyze country's trade dependencies # and vulnerability to different types of tariff shocks return { "import_dependency": {}, "export_exposure": {}, "supply_chain_vulnerability": {}, "economic_resilience": {}, }