thegeekybeng's picture
πŸš€ Deploy TIPM v1.5 - Professional Economic Intelligence Platform
8986ff6
"""
NLP utilities for policy text processing
"""
import re
from typing import List, Dict, Any, Tuple
import pandas as pd
import numpy as np
import logging
class PolicyTextProcessor:
"""
Text processing utilities for policy documents
"""
def __init__(self):
"""Initialize text processor with patterns and vocabularies"""
# Country name mappings
self.country_mappings = {
"united states": "US",
"china": "CN",
"singapore": "SG",
"malaysia": "MY",
"thailand": "TH",
"vietnam": "VN",
"indonesia": "ID",
"philippines": "PH",
"japan": "JP",
"south korea": "KR",
"germany": "DE",
"france": "FR",
"united kingdom": "UK",
"canada": "CA",
"mexico": "MX",
"brazil": "BR",
"india": "IN",
"australia": "AU",
}
# Policy type indicators
self.policy_indicators = {
"tariff": ["tariff", "duty", "customs", "import tax"],
"quota": ["quota", "limit", "restriction", "ceiling"],
"subsidy": ["subsidy", "support", "assistance", "aid"],
"sanction": ["sanction", "penalty", "embargo", "ban"],
"agreement": ["agreement", "treaty", "accord", "pact"],
}
# Urgency indicators
self.urgency_patterns = [
r"immediate(?:ly)?",
r"urgent(?:ly)?",
r"emergency",
r"temporary",
r"suspension",
r"retaliation",
r"response\s+to",
r"investigation",
r"anti.?dumping",
r"safeguard",
]
# Date patterns
self.date_patterns = [
r"\d{1,2}[/-]\d{1,2}[/-]\d{2,4}",
r"\d{4}[/-]\d{1,2}[/-]\d{1,2}",
r"(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+\d{4}",
]
def clean_text(self, text: str) -> str:
"""Clean and normalize policy text"""
if not isinstance(text, str):
return ""
# Remove extra whitespace
text = re.sub(r"\s+", " ", text)
# Remove special characters but keep punctuation
text = re.sub(r"[^\w\s\.,;:!?()-]", " ", text)
# Normalize case
text = text.strip().lower()
return text
def extract_entities(self, text: str) -> Dict[str, List[str]]:
"""Extract named entities from policy text"""
text_clean = self.clean_text(text)
entities = {
"countries": [],
"dates": [],
"hs_codes": [],
"amounts": [],
"policy_types": [],
}
# Extract countries
for country_name, country_code in self.country_mappings.items():
if country_name in text_clean:
entities["countries"].append(country_code)
# Extract dates
for pattern in self.date_patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
entities["dates"].extend(matches)
# Extract HS codes
hs_patterns = [
r"hs\s*(\d{2,10})",
r"heading\s*(\d{2,4})",
r"tariff\s*line\s*(\d+)",
r"classification\s*(\d+)",
]
for pattern in hs_patterns:
matches = re.findall(pattern, text_clean, re.IGNORECASE)
entities["hs_codes"].extend(matches)
# Extract monetary amounts
amount_patterns = [
r"\$\s*(\d+(?:,\d{3})*(?:\.\d{2})?)",
r"(\d+(?:,\d{3})*(?:\.\d{2})?)\s*(?:dollar|usd|million|billion)",
r"(\d+(?:\.\d+)?)\s*%",
]
for pattern in amount_patterns:
matches = re.findall(pattern, text_clean, re.IGNORECASE)
entities["amounts"].extend(matches)
# Extract policy types
for policy_type, keywords in self.policy_indicators.items():
if any(keyword in text_clean for keyword in keywords):
entities["policy_types"].append(policy_type)
return entities
def calculate_sentiment_score(self, text: str) -> float:
"""Calculate basic sentiment score for policy text"""
# Simplified sentiment analysis based on word lists
positive_words = [
"benefit",
"growth",
"increase",
"improve",
"support",
"enhance",
"strengthen",
"boost",
"advantage",
"opportunity",
]
negative_words = [
"tariff",
"penalty",
"restriction",
"ban",
"limit",
"reduce",
"decrease",
"harm",
"damage",
"threat",
"sanction",
"retaliation",
"dispute",
"conflict",
]
neutral_words = [
"policy",
"measure",
"regulation",
"standard",
"procedure",
"implement",
"establish",
"maintain",
"review",
"monitor",
]
text_clean = self.clean_text(text)
words = text_clean.split()
positive_count = sum(1 for word in words if word in positive_words)
negative_count = sum(1 for word in words if word in negative_words)
neutral_count = sum(1 for word in words if word in neutral_words)
total_sentiment_words = positive_count + negative_count + neutral_count
if total_sentiment_words == 0:
return 0.0
# Normalize to -1 to 1 scale
sentiment_score = (positive_count - negative_count) / total_sentiment_words
return max(-1.0, min(1.0, sentiment_score))
def extract_numerical_features(self, text: str) -> Dict[str, float]:
"""Extract numerical features from text for ML models"""
text_clean = self.clean_text(text)
features = {
"text_length": len(text),
"word_count": len(text_clean.split()),
"sentence_count": len([s for s in re.split(r"[.!?]+", text) if s.strip()]),
"avg_word_length": (
np.mean([len(word) for word in text_clean.split()])
if text_clean.split()
else 0
),
"punctuation_ratio": (
sum(1 for char in text if char in ".,;:!?") / len(text) if text else 0
),
"uppercase_ratio": (
sum(1 for char in text if char.isupper()) / len(text) if text else 0
),
"digit_ratio": (
sum(1 for char in text if char.isdigit()) / len(text) if text else 0
),
"urgency_score": self._calculate_urgency_score(text_clean),
"sentiment_score": self.calculate_sentiment_score(text),
"entity_density": self._calculate_entity_density(text),
}
return features
def _calculate_urgency_score(self, text: str) -> float:
"""Calculate urgency score based on keyword patterns"""
urgency_count = 0
for pattern in self.urgency_patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
urgency_count += len(matches)
# Normalize by text length
words = text.split()
if not words:
return 0.0
return min(urgency_count / len(words) * 100, 1.0)
def _calculate_entity_density(self, text: str) -> float:
"""Calculate entity density in text"""
entities = self.extract_entities(text)
total_entities = sum(len(entity_list) for entity_list in entities.values())
words = text.split()
if not words:
return 0.0
return total_entities / len(words)
def identify_policy_scope(self, text: str) -> Dict[str, Any]:
"""Identify the scope and impact level of a policy"""
text_clean = self.clean_text(text)
entities = self.extract_entities(text)
scope_indicators = {
"bilateral": ["between", "bilateral", "two countries", "agreement with"],
"multilateral": ["multilateral", "multiple countries", "wto", "regional"],
"unilateral": ["unilateral", "impose", "implement", "domestic"],
"global": ["global", "worldwide", "international", "all countries"],
}
scope_scores = {}
for scope_type, indicators in scope_indicators.items():
score = sum(1 for indicator in indicators if indicator in text_clean)
scope_scores[scope_type] = score
# Determine primary scope
primary_scope = (
max(scope_scores.items(), key=lambda x: x[1])[0]
if any(scope_scores.values())
else "unknown"
)
return {
"primary_scope": primary_scope,
"scope_scores": scope_scores,
"affected_countries": entities["countries"],
"policy_types": entities["policy_types"],
"confidence": (
max(scope_scores.values()) / sum(scope_scores.values())
if sum(scope_scores.values()) > 0
else 0
),
}
def parse_policy_timeline(self, text: str) -> List[Dict[str, Any]]:
"""Parse timeline information from policy text"""
timeline_patterns = [
(
r"effective\s+(?:from\s+)?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})",
"effective_date",
),
(r"expires?\s+(?:on\s+)?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})", "expiry_date"),
(r"review\s+(?:on\s+)?(\d{1,2}[/-]\d{1,2}[/-]\d{2,4})", "review_date"),
(r"(?:within\s+)?(\d+)\s+(?:days?|months?|years?)", "duration"),
(r"immediate(?:ly)?", "immediate"),
]
timeline_events = []
for pattern, event_type in timeline_patterns:
matches = re.findall(pattern, text, re.IGNORECASE)
for match in matches:
timeline_events.append(
{
"type": event_type,
"value": match,
"text_position": text.lower().find(match.lower()),
}
)
# Sort by position in text
timeline_events.sort(key=lambda x: x["text_position"])
return timeline_events
def extract_policy_triggers(text: str) -> Any:
"""Extract policy triggers from text (stub)."""
logging.info(f"Extracting policy triggers from text: {text[:30]}...")
# Placeholder for actual implementation
return None