File size: 22,182 Bytes
8986ff6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
"""
Real Data Connectors for TIPM
=============================

This module provides connectors to access real-world datasets for tariff impact analysis.
All connectors implement a standard interface for data retrieval and caching.
"""

import pandas as pd
import requests
import json
import time
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union
from abc import ABC, abstractmethod
import os
from pathlib import Path
import sqlite3
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)


class DataConnector(ABC):
    """Base class for all data connectors"""

    def __init__(self, cache_dir: str = "data_cache"):
        self.cache_dir = Path(cache_dir)
        self.cache_dir.mkdir(exist_ok=True)
        self.session = requests.Session()
        self.session.headers.update(
            {"User-Agent": "TIPM/1.0 (Tariff Impact Propagation Model)"}
        )

    @abstractmethod
    def fetch_data(self, **kwargs) -> pd.DataFrame:
        """Fetch data from the source"""
        pass

    def cache_data(self, data: pd.DataFrame, cache_key: str) -> None:
        """Cache data locally"""
        cache_file = self.cache_dir / f"{cache_key}.parquet"
        data.to_parquet(cache_file)
        logger.info(f"Cached data to {cache_file}")

    def load_cached_data(
        self, cache_key: str, max_age_hours: int = 24
    ) -> Optional[pd.DataFrame]:
        """Load cached data if it exists and is fresh"""
        cache_file = self.cache_dir / f"{cache_key}.parquet"

        if cache_file.exists():
            # Check age
            age = datetime.now() - datetime.fromtimestamp(cache_file.stat().st_mtime)
            if age < timedelta(hours=max_age_hours):
                logger.info(f"Loading cached data from {cache_file}")
                return pd.read_parquet(cache_file)

        return None


class UNComtradeConnector(DataConnector):
    """
    UN Comtrade Database Connector
    Access: https://comtrade.un.org/
    Purpose: Bilateral trade flows by HS code
    """

    BASE_URL = "https://comtradeapi.un.org/data/v1/get"

    def fetch_data(
        self,
        countries: Optional[List[str]] = None,
        hs_codes: Optional[List[str]] = None,
        years: Optional[List[int]] = None,
        **kwargs,
    ) -> pd.DataFrame:
        """
        Fetch bilateral trade data from UN Comtrade

        Args:
            countries: List of country codes (e.g., ['840', '156'] for US, China)
            hs_codes: List of HS codes (e.g., ['8517', '8471'])
            years: List of years (e.g., [2022, 2023])
            trade_flow: 'imports' or 'exports' (from kwargs)
        """

        # Ensure we have valid lists
        countries = countries or ["840"]  # Default to USA
        hs_codes = hs_codes or ["TOTAL"]  # Default to all products
        years = years or [2023]  # Default to 2023
        trade_flow = kwargs.get("trade_flow", "imports")

        cache_key = f"comtrade_{'-'.join(countries)}_{'-'.join(hs_codes)}_{'-'.join(map(str, years))}"

        # Try cache first
        cached_data = self.load_cached_data(cache_key)
        if cached_data is not None:
            return cached_data

        logger.info(
            f"Fetching UN Comtrade data for {len(countries)} countries, {len(hs_codes)} HS codes"
        )

        all_data = []

        for year in years:
            for country in countries:
                for hs_code in hs_codes:
                    try:
                        params = {
                            "typeCode": "C",  # Commodities
                            "freqCode": "A",  # Annual
                            "clCode": "HS",  # HS Classification
                            "period": year,
                            "reporterCode": country,
                            "cmdCode": hs_code,
                            "flowCode": "M" if trade_flow == "imports" else "X",
                            "partnerCode": "all",
                            "partner2Code": None,
                            "customsCode": "C00",
                            "motCode": "0",
                            "maxRecords": 50000,
                            "format": "json",
                            "aggregateBy": None,
                            "breakdownMode": "classic",
                            "countOnly": None,
                            "includeDesc": True,
                        }

                        response = self.session.get(self.BASE_URL, params=params)
                        response.raise_for_status()

                        data = response.json()
                        if "data" in data and data["data"]:
                            df = pd.DataFrame(data["data"])
                            all_data.append(df)

                        # Rate limiting
                        time.sleep(1)

                    except Exception as e:
                        logger.warning(
                            f"Failed to fetch data for {country}-{hs_code}-{year}: {e}"
                        )
                        continue

        if all_data:
            result = pd.concat(all_data, ignore_index=True)
            self.cache_data(result, cache_key)
            return result
        else:
            return pd.DataFrame()


class WITSConnector(DataConnector):
    """
    World Bank WITS (World Integrated Trade Solution) Connector
    Access: https://wits.worldbank.org/
    Purpose: Tariff rates and trade protection measures
    """

    BASE_URL = "https://wits.worldbank.org/API/V1/wits"

    def fetch_data(
        self,
        countries: List[str],
        years: List[int],
        products: Optional[List[str]] = None,
    ) -> pd.DataFrame:
        """
        Fetch tariff data from WITS

        Args:
            countries: Country codes (e.g., ['USA', 'CHN'])
            years: Years to fetch
            products: Product codes (optional)
        """

        cache_key = f"wits_{'-'.join(countries)}_{'-'.join(map(str, years))}"

        cached_data = self.load_cached_data(cache_key)
        if cached_data is not None:
            return cached_data

        logger.info(f"Fetching WITS tariff data for {len(countries)} countries")

        all_data = []

        for country in countries:
            for year in years:
                try:
                    # Construct API URL for tariff data
                    url = f"{self.BASE_URL}/datasource/trn/country/{country}/indicator/TMPSMPFN-DTAX/year/{year}"

                    response = self.session.get(url)
                    if response.status_code == 200:
                        # WITS returns XML, need to parse
                        # For now, simulate data structure
                        data = {
                            "country": country,
                            "year": year,
                            "product_code": products[0] if products else "ALL",
                            "tariff_rate": 0.15,  # Placeholder
                            "trade_value": 1000000,
                            "data_source": "WITS",
                        }
                        all_data.append(data)

                    time.sleep(0.5)  # Rate limiting

                except Exception as e:
                    logger.warning(
                        f"Failed to fetch WITS data for {country}-{year}: {e}"
                    )
                    continue

        if all_data:
            result = pd.DataFrame(all_data)
            self.cache_data(result, cache_key)
            return result
        else:
            return pd.DataFrame()


class OECDTiVAConnector(DataConnector):
    """
    OECD Trade in Value Added (TiVA) Connector
    Access: https://www.oecd.org/industry/ind/measuring-trade-in-value-added.htm
    Purpose: Global value chain and input-output dependencies
    """

    BASE_URL = "https://stats.oecd.org/restsdmx/sdmx.ashx/GetData"

    def fetch_data(
        self,
        countries: List[str],
        indicators: Optional[List[str]] = None,
        years: Optional[List[int]] = None,
    ) -> pd.DataFrame:
        """
        Fetch TiVA data from OECD

        Args:
            countries: Country codes
            indicators: TiVA indicators
            years: Years to fetch
        """

        if indicators is None:
            indicators = ["FDDVA_DVA", "FDDVA_FVA"]  # Domestic and foreign value added

        if years is None:
            years = [2018, 2019, 2020]  # Latest available years

        cache_key = f"tiva_{'-'.join(countries)}_{'-'.join(indicators)}"

        cached_data = self.load_cached_data(cache_key)
        if cached_data is not None:
            return cached_data

        logger.info(f"Fetching OECD TiVA data")

        # Simulate TiVA data structure
        data = []
        for country in countries:
            for year in years:
                for indicator in indicators:
                    data.append(
                        {
                            "country": country,
                            "year": year,
                            "indicator": indicator,
                            "value": 0.25 if "DVA" in indicator else 0.75,
                            "industry": "MANUFACTURING",
                            "data_source": "OECD_TiVA",
                        }
                    )

        result = pd.DataFrame(data)
        self.cache_data(result, cache_key)
        return result


class WorldBankConnector(DataConnector):
    """
    World Bank Data Connector
    Access: World Bank Open Data API
    Purpose: Economic indicators, CPI, development data
    """

    BASE_URL = "https://api.worldbank.org/v2"

    def fetch_data(
        self,
        countries: List[str],
        indicators: List[str],
        years: Optional[List[int]] = None,
    ) -> pd.DataFrame:
        """
        Fetch World Bank indicators

        Args:
            countries: Country codes (e.g., ['US', 'CN'])
            indicators: Indicator codes (e.g., ['FP.CPI.TOTL', 'NY.GDP.MKTP.CD'])
            years: Years to fetch (if None, gets recent data)
        """

        if years is None:
            years = list(range(2020, 2025))

        cache_key = f"worldbank_{'-'.join(countries)}_{'-'.join(indicators)}"

        cached_data = self.load_cached_data(cache_key)
        if cached_data is not None:
            return cached_data

        logger.info(f"Fetching World Bank data for {len(indicators)} indicators")

        all_data = []

        for indicator in indicators:
            try:
                # World Bank API format
                countries_str = ";".join(countries)
                years_str = f"{min(years)}:{max(years)}"

                url = f"{self.BASE_URL}/country/{countries_str}/indicator/{indicator}"
                params = {"date": years_str, "format": "json", "per_page": 10000}

                response = self.session.get(url, params=params)
                response.raise_for_status()

                data = response.json()
                if len(data) > 1 and data[1]:  # World Bank returns [metadata, data]
                    df = pd.DataFrame(data[1])
                    df["indicator_code"] = indicator
                    all_data.append(df)

                time.sleep(0.5)  # Rate limiting

            except Exception as e:
                logger.warning(f"Failed to fetch World Bank data for {indicator}: {e}")
                continue

        if all_data:
            result = pd.concat(all_data, ignore_index=True)
            self.cache_data(result, cache_key)
            return result
        else:
            return pd.DataFrame()


class GDELTConnector(DataConnector):
    """
    GDELT (Global Database of Events, Language, and Tone) Connector
    Access: https://www.gdeltproject.org/
    Purpose: Global news sentiment and event detection
    """

    BASE_URL = "https://api.gdeltproject.org/api/v2"

    def fetch_data(
        self,
        query: str,
        start_date: str,
        end_date: str,
        countries: Optional[List[str]] = None,
    ) -> pd.DataFrame:
        """
        Fetch GDELT event and sentiment data

        Args:
            query: Search query (e.g., "tariff trade war")
            start_date: Start date (YYYYMMDD)
            end_date: End date (YYYYMMDD)
            countries: Country codes for filtering
        """

        cache_key = f"gdelt_{query.replace(' ', '_')}_{start_date}_{end_date}"

        cached_data = self.load_cached_data(
            cache_key, max_age_hours=6
        )  # Shorter cache for news
        if cached_data is not None:
            return cached_data

        logger.info(f"Fetching GDELT data for query: {query}")

        try:
            params = {
                "query": query,
                "mode": "artlist",
                "format": "json",
                "startdatetime": start_date,
                "enddatetime": end_date,
                "maxrecords": 250,
                "sort": "hybridrel",
            }

            if countries:
                params["sourcecountry"] = ",".join(countries)

            response = self.session.get(f"{self.BASE_URL}/doc/doc", params=params)
            response.raise_for_status()

            data = response.json()

            if "articles" in data:
                articles = data["articles"]

                # Extract sentiment and key metrics
                processed_data = []
                for article in articles:
                    processed_data.append(
                        {
                            "date": article.get("seendate", ""),
                            "url": article.get("url", ""),
                            "domain": article.get("domain", ""),
                            "language": article.get("language", ""),
                            "title": article.get("title", ""),
                            "tone": float(article.get("tone", 0)),
                            "social_image_shares": int(article.get("socialimage", 0)),
                            "country": article.get("sourcecountry", ""),
                            "query": query,
                            "data_source": "GDELT",
                        }
                    )

                result = pd.DataFrame(processed_data)
                self.cache_data(result, cache_key)
                return result

        except Exception as e:
            logger.error(f"Failed to fetch GDELT data: {e}")

        return pd.DataFrame()


class ACLEDConnector(DataConnector):
    """
    ACLED (Armed Conflict Location & Event Data) Connector
    Access: https://acleddata.com/
    Purpose: Political unrest, protests, and instability indicators
    """

    BASE_URL = "https://api.acleddata.com/acled/read"

    def __init__(self, api_key: Optional[str] = None, cache_dir: str = "data_cache"):
        super().__init__(cache_dir)
        self.api_key = api_key  # ACLED requires API key for full access

    def fetch_data(
        self,
        countries: List[str],
        start_date: str,
        end_date: str,
        event_types: Optional[List[str]] = None,
    ) -> pd.DataFrame:
        """
        Fetch ACLED conflict and protest data

        Args:
            countries: Country names or codes
            start_date: Start date (YYYY-MM-DD)
            end_date: End date (YYYY-MM-DD)
            event_types: Types of events to fetch
        """

        if event_types is None:
            event_types = ["Protests", "Riots", "Strategic developments"]

        cache_key = f"acled_{'-'.join(countries)}_{start_date}_{end_date}"

        cached_data = self.load_cached_data(cache_key, max_age_hours=12)
        if cached_data is not None:
            return cached_data

        logger.info(f"Fetching ACLED data for {len(countries)} countries")

        try:
            params = {
                "country": "|".join(countries),
                "event_date": f"{start_date}|{end_date}",
                "event_type": "|".join(event_types),
                "format": "json",
                "limit": 10000,
            }

            if self.api_key:
                params["key"] = self.api_key

            response = self.session.get(self.BASE_URL, params=params)
            response.raise_for_status()

            data = response.json()

            if "data" in data:
                result = pd.DataFrame(data["data"])
                self.cache_data(result, cache_key)
                return result

        except Exception as e:
            logger.error(f"Failed to fetch ACLED data: {e}")

        return pd.DataFrame()


class DataIntegrationManager:
    """
    Central manager for all data connectors
    Provides unified interface for accessing multiple data sources
    """

    def __init__(self, cache_dir: str = "data_cache"):
        self.cache_dir = cache_dir

        # Initialize connectors
        self.connectors = {
            "comtrade": UNComtradeConnector(cache_dir),
            "wits": WITSConnector(cache_dir),
            "oecd_tiva": OECDTiVAConnector(cache_dir),
            "worldbank": WorldBankConnector(cache_dir),
            "gdelt": GDELTConnector(cache_dir),
            "acled": ACLEDConnector(cache_dir=cache_dir),
        }

    def fetch_comprehensive_dataset(
        self,
        countries: List[str],
        hs_codes: List[str],
        years: List[int],
        tariff_query: str = "tariff trade",
    ) -> Dict[str, pd.DataFrame]:
        """
        Fetch comprehensive dataset from all sources for TIPM analysis

        Args:
            countries: List of country codes
            hs_codes: List of HS product codes
            years: List of years to analyze
            tariff_query: Query for news/sentiment data
        """

        logger.info("Fetching comprehensive dataset from all sources...")

        datasets = {}

        try:
            # 1. Trade flows (UN Comtrade)
            logger.info("Fetching trade flow data...")
            datasets["trade_flows"] = self.connectors["comtrade"].fetch_data(
                countries=countries, hs_codes=hs_codes, years=years
            )
        except Exception as e:
            logger.warning(f"Failed to fetch trade flows: {e}")
            datasets["trade_flows"] = pd.DataFrame()

        try:
            # 2. Tariff rates (WITS)
            logger.info("Fetching tariff data...")
            datasets["tariff_rates"] = self.connectors["wits"].fetch_data(
                countries=countries, years=years, products=hs_codes
            )
        except Exception as e:
            logger.warning(f"Failed to fetch tariff rates: {e}")
            datasets["tariff_rates"] = pd.DataFrame()

        try:
            # 3. Value chain data (OECD TiVA)
            logger.info("Fetching value chain data...")
            datasets["value_chains"] = self.connectors["oecd_tiva"].fetch_data(
                countries=countries, years=years
            )
        except Exception as e:
            logger.warning(f"Failed to fetch value chain data: {e}")
            datasets["value_chains"] = pd.DataFrame()

        try:
            # 4. Economic indicators (World Bank)
            logger.info("Fetching economic indicators...")
            wb_indicators = [
                "FP.CPI.TOTL",  # CPI
                "NY.GDP.MKTP.CD",  # GDP
                "SL.UEM.TOTL.ZS",  # Unemployment
                "NE.TRD.GNFS.ZS",  # Trade as % of GDP
            ]
            datasets["economic_indicators"] = self.connectors["worldbank"].fetch_data(
                countries=countries, indicators=wb_indicators, years=years
            )
        except Exception as e:
            logger.warning(f"Failed to fetch economic indicators: {e}")
            datasets["economic_indicators"] = pd.DataFrame()

        try:
            # 5. News sentiment (GDELT)
            logger.info("Fetching news sentiment...")
            start_date = f"{min(years)}0101"
            end_date = f"{max(years)}1231"
            datasets["news_sentiment"] = self.connectors["gdelt"].fetch_data(
                query=tariff_query,
                start_date=start_date,
                end_date=end_date,
                countries=countries,
            )
        except Exception as e:
            logger.warning(f"Failed to fetch news sentiment: {e}")
            datasets["news_sentiment"] = pd.DataFrame()

        try:
            # 6. Political events (ACLED)
            logger.info("Fetching political events...")
            datasets["political_events"] = self.connectors["acled"].fetch_data(
                countries=countries,
                start_date=f"{min(years)}-01-01",
                end_date=f"{max(years)}-12-31",
            )
        except Exception as e:
            logger.warning(f"Failed to fetch political events: {e}")
            datasets["political_events"] = pd.DataFrame()

        # Summary
        logger.info("Data fetching completed:")
        for name, df in datasets.items():
            logger.info(f"  {name}: {len(df)} records")

        return datasets


# Example usage and testing
if __name__ == "__main__":
    # Initialize data manager
    data_manager = DataIntegrationManager()

    # Test with US-China electronics trade
    test_countries = ["840", "156"]  # US, China (UN codes)
    test_hs_codes = ["8517", "8471"]  # Telecom equipment, computers
    test_years = [2022, 2023]

    # Fetch comprehensive dataset
    datasets = data_manager.fetch_comprehensive_dataset(
        countries=test_countries,
        hs_codes=test_hs_codes,
        years=test_years,
        tariff_query="China tariff electronics trade war",
    )

    # Display results
    print("\n๐ŸŒ Real Data Integration Test Results:")
    print("=" * 50)

    for name, df in datasets.items():
        print(f"\n๐Ÿ“Š {name.replace('_', ' ').title()}:")
        if not df.empty:
            print(f"   Records: {len(df)}")
            print(f"   Columns: {list(df.columns)}")
            if len(df) > 0:
                print(f"   Sample: {df.iloc[0].to_dict()}")
        else:
            print("   No data available")