File size: 6,345 Bytes
8977253 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
---
pipeline_tag: text-generation
base_model: ibm-granite/granite-3b-code-instruct-2k
inference: false
license: apache-2.0
datasets:
- bigcode/commitpackft
- TIGER-Lab/MathInstruct
- meta-math/MetaMathQA
- glaiveai/glaive-code-assistant-v3
- glaive-function-calling-v2
- bugdaryan/sql-create-context-instruction
- garage-bAInd/Open-Platypus
- nvidia/HelpSteer
metrics:
- code_eval
library_name: transformers
tags:
- code
- granite
- TensorBlock
- GGUF
model-index:
- name: granite-3b-code-instruct
results:
- task:
type: text-generation
dataset:
name: HumanEvalSynthesis(Python)
type: bigcode/humanevalpack
metrics:
- type: pass@1
value: 51.2
name: pass@1
- type: pass@1
value: 43.9
name: pass@1
- type: pass@1
value: 41.5
name: pass@1
- type: pass@1
value: 31.7
name: pass@1
- type: pass@1
value: 40.2
name: pass@1
- type: pass@1
value: 29.3
name: pass@1
- type: pass@1
value: 39.6
name: pass@1
- type: pass@1
value: 26.8
name: pass@1
- type: pass@1
value: 39.0
name: pass@1
- type: pass@1
value: 14.0
name: pass@1
- type: pass@1
value: 23.8
name: pass@1
- type: pass@1
value: 12.8
name: pass@1
- type: pass@1
value: 26.8
name: pass@1
- type: pass@1
value: 28.0
name: pass@1
- type: pass@1
value: 33.5
name: pass@1
- type: pass@1
value: 27.4
name: pass@1
- type: pass@1
value: 31.7
name: pass@1
- type: pass@1
value: 16.5
name: pass@1
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## ibm-granite/granite-3b-code-instruct-2k - GGUF
This repo contains GGUF format model files for [ibm-granite/granite-3b-code-instruct-2k](https://huggingface.co/ibm-granite/granite-3b-code-instruct-2k).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
System:
{system_prompt}
Question:
{prompt}
Answer:
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-3b-code-instruct-2k-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q2_K.gguf) | Q2_K | 1.247 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-3b-code-instruct-2k-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q3_K_S.gguf) | Q3_K_S | 1.445 GB | very small, high quality loss |
| [granite-3b-code-instruct-2k-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q3_K_M.gguf) | Q3_K_M | 1.608 GB | very small, high quality loss |
| [granite-3b-code-instruct-2k-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q3_K_L.gguf) | Q3_K_L | 1.747 GB | small, substantial quality loss |
| [granite-3b-code-instruct-2k-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q4_0.gguf) | Q4_0 | 1.860 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-3b-code-instruct-2k-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q4_K_S.gguf) | Q4_K_S | 1.875 GB | small, greater quality loss |
| [granite-3b-code-instruct-2k-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q4_K_M.gguf) | Q4_K_M | 1.986 GB | medium, balanced quality - recommended |
| [granite-3b-code-instruct-2k-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q5_0.gguf) | Q5_0 | 2.251 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-3b-code-instruct-2k-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q5_K_S.gguf) | Q5_K_S | 2.251 GB | large, low quality loss - recommended |
| [granite-3b-code-instruct-2k-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q5_K_M.gguf) | Q5_K_M | 2.316 GB | large, very low quality loss - recommended |
| [granite-3b-code-instruct-2k-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q6_K.gguf) | Q6_K | 2.666 GB | very large, extremely low quality loss |
| [granite-3b-code-instruct-2k-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3b-code-instruct-2k-GGUF/tree/main/granite-3b-code-instruct-2k-Q8_0.gguf) | Q8_0 | 3.451 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/granite-3b-code-instruct-2k-GGUF --include "granite-3b-code-instruct-2k-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/granite-3b-code-instruct-2k-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|