Temirulan Mussayev commited on
Commit
7344527
·
1 Parent(s): 28fbddc

adding files

Browse files
DONATE.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Donate
2
+
3
+ Apache software is free software.
4
+
5
+ For those able & willing to support my work, I accept *unconditional, no-strings-attached* donations in the form of **GPU cloud credit** (and soon, via GitHub Sponsors). This helps me run experiments and train models.
6
+
7
+ Please do not "attach strings" to donations since I cannot serve them through donation channels (that includes model requests, consulting, brand sponsorships).
8
+
9
+ Also, along the lines of "Never buy a product based on the future promise of updates", I would discourage you from donating because you expect a specific model to come down the pipeline. Hopefully, donors broadly believe that good things happen when [someone gets this man (yours truly) a GPU](https://i.redd.it/r8dtt3n9rc431.jpg).
10
+
11
+ ### Vast.ai Referral Link
12
+ Vast.ai is a vendor I use for cloud GPUs. I "earn 3% of all referred customer revenue as credits": [https://cloud.vast.ai/?ref_id=79907](https://cloud.vast.ai/?ref_id=79907)
13
+
14
+ ### Vast.ai Transfer Credit
15
+ To transfer $5 of credit directly to my Vast.ai account `[email protected]`, you can use `transfer credit` in the Vast CLI like so:
16
+
17
+ ```sh
18
+ vastai transfer credit [email protected] 5
19
+ ```
20
+
21
+ The usage of the `transfer credit` command is documented here: https://docs.vast.ai/api/commands#voyTE
22
+
23
+ ```sh
24
+ usage: vastai transfer credit RECIPIENT AMOUNT
25
+
26
+ positional arguments:
27
+ recipient email of recipient account
28
+ amount $dollars of credit to transfer
29
+
30
+ Transfer (amount) credits to account with email (recipient).
31
+ ```
32
+
33
+ ### RunPod Referral Link
34
+ RunPod is another vendor I use for cloud GPUs. I earn "5% from serverless and 1% from templates": https://runpod.io?ref=pup8o2ly
35
+
36
+ ### RunPod Credit Codes
37
+ After signing in to RunPod, under `Account > Billing > Credit Codes`, you can "generate a code that allows you to gift funds to another RunPod user":
38
+
39
+ > Simply give them the code and they will be able to redeem it for credits on their billing page. Please safeguard your codes as they are worth money!
40
+ > Credits will be debited from your account immediately. You can redeem the code yourself if you want to recover your credits. There is a 2% transaction fee for payment processing!
41
+
42
+ If you wish to send codes, you can do so by emailing `[email protected]`, or DM me on Discord `@rzvzn`.
43
+
44
+ ### Coming Soon: GitHub Sponsors
45
+ GitHub Sponsors application currently pending for: https://github.com/hexgrad
README.md CHANGED
@@ -1,3 +1,161 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ base_model:
6
+ - yl4579/StyleTTS2-LJSpeech
7
+ pipeline_tag: text-to-speech
8
+ ---
9
+ 📣 Jan 21: A new Kokoro model should land in about a week, towards the end of January https://hf.co/hexgrad/Kokoro-82M/discussions/36
10
+
11
+ ❤️ Kokoro Discord Server: https://discord.gg/QuGxSWBfQy
12
+
13
+ <audio controls><source src="https://huggingface.co/hexgrad/Kokoro-82M/resolve/main/demo/HEARME.wav" type="audio/wav"></audio>
14
+
15
+ **Kokoro** is a frontier TTS model for its size of **82 million parameters** (text in/audio out).
16
+
17
+ On 25 Dec 2024, Kokoro v0.19 weights were permissively released in full fp32 precision under an Apache 2.0 license. As of 2 Jan 2025, 10 unique Voicepacks have been released, and a `.onnx` version of v0.19 is available.
18
+
19
+ In the weeks leading up to its release, Kokoro v0.19 was the #1🥇 ranked model in [TTS Spaces Arena](https://huggingface.co/hexgrad/Kokoro-82M#evaluation). Kokoro had achieved higher Elo in this single-voice Arena setting over other models, using fewer parameters and less data:
20
+ 1. **Kokoro v0.19: 82M params, Apache, trained on <100 hours of audio**
21
+ 2. XTTS v2: 467M, CPML, >10k hours
22
+ 3. Edge TTS: Microsoft, proprietary
23
+ 4. MetaVoice: 1.2B, Apache, 100k hours
24
+ 5. Parler Mini: 880M, Apache, 45k hours
25
+ 6. Fish Speech: ~500M, CC-BY-NC-SA, 1M hours
26
+
27
+ Kokoro's ability to top this Elo ladder suggests that the scaling law (Elo vs compute/data/params) for traditional TTS models might have a steeper slope than previously expected.
28
+
29
+ You can find a hosted demo at [hf.co/spaces/hexgrad/Kokoro-TTS](https://huggingface.co/spaces/hexgrad/Kokoro-TTS).
30
+
31
+ ### Usage
32
+
33
+ The following can be run in a single cell on [Google Colab](https://colab.research.google.com/).
34
+ ```py
35
+ # 1️⃣ Install dependencies silently
36
+ !git lfs install
37
+ !git clone https://huggingface.co/hexgrad/Kokoro-82M
38
+ %cd Kokoro-82M
39
+ !apt-get -qq -y install espeak-ng > /dev/null 2>&1
40
+ !pip install -q phonemizer torch transformers scipy munch
41
+
42
+ # 2️⃣ Build the model and load the default voicepack
43
+ from models import build_model
44
+ import torch
45
+ device = 'cuda' if torch.cuda.is_available() else 'cpu'
46
+ MODEL = build_model('kokoro-v0_19.pth', device)
47
+ VOICE_NAME = [
48
+ 'af', # Default voice is a 50-50 mix of Bella & Sarah
49
+ 'af_bella', 'af_sarah', 'am_adam', 'am_michael',
50
+ 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
51
+ 'af_nicole', 'af_sky',
52
+ ][0]
53
+ VOICEPACK = torch.load(f'voices/{VOICE_NAME}.pt', weights_only=True).to(device)
54
+ print(f'Loaded voice: {VOICE_NAME}')
55
+
56
+ # 3️⃣ Call generate, which returns 24khz audio and the phonemes used
57
+ from kokoro import generate
58
+ text = "How could I know? It's an unanswerable question. Like asking an unborn child if they'll lead a good life. They haven't even been born."
59
+ audio, out_ps = generate(MODEL, text, VOICEPACK, lang=VOICE_NAME[0])
60
+ # Language is determined by the first letter of the VOICE_NAME:
61
+ # 🇺🇸 'a' => American English => en-us
62
+ # 🇬🇧 'b' => British English => en-gb
63
+
64
+ # 4️⃣ Display the 24khz audio and print the output phonemes
65
+ from IPython.display import display, Audio
66
+ display(Audio(data=audio, rate=24000, autoplay=True))
67
+ print(out_ps)
68
+ ```
69
+ If you have trouble with `espeak-ng`, see this [github issue](https://github.com/bootphon/phonemizer/issues/44#issuecomment-1540885186). [Mac users also see this](https://huggingface.co/hexgrad/Kokoro-82M/discussions/12#677435d3d8ace1de46071489), and [Windows users see this](https://huggingface.co/hexgrad/Kokoro-82M/discussions/12#67742594fdeebf74f001ecfc).
70
+
71
+ For ONNX usage, see [#14](https://huggingface.co/hexgrad/Kokoro-82M/discussions/14).
72
+
73
+ ### Model Facts
74
+
75
+ No affiliation can be assumed between parties on different lines.
76
+
77
+ **Architecture:**
78
+ - StyleTTS 2: https://arxiv.org/abs/2306.07691
79
+ - ISTFTNet: https://arxiv.org/abs/2203.02395
80
+ - Decoder only: no diffusion, no encoder release
81
+
82
+ **Architected by:** Li et al @ https://github.com/yl4579/StyleTTS2
83
+
84
+ **Trained by**: `@rzvzn` on Discord
85
+
86
+ **Supported Languages:** American English, British English
87
+
88
+ **Model SHA256 Hash:** `3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a`
89
+
90
+ ### Releases
91
+ - 25 Dec 2024: Model v0.19, `af_bella`, `af_sarah`
92
+ - 26 Dec 2024: `am_adam`, `am_michael`
93
+ - 28 Dec 2024: `bf_emma`, `bf_isabella`, `bm_george`, `bm_lewis`
94
+ - 30 Dec 2024: `af_nicole`
95
+ - 31 Dec 2024: `af_sky`
96
+ - 2 Jan 2025: ONNX v0.19 `ebef4245`
97
+
98
+ ### Licenses
99
+ - Apache 2.0 weights in this repository
100
+ - MIT inference code in [spaces/hexgrad/Kokoro-TTS](https://huggingface.co/spaces/hexgrad/Kokoro-TTS) adapted from [yl4579/StyleTTS2](https://github.com/yl4579/StyleTTS2)
101
+ - GPLv3 dependency in [espeak-ng](https://github.com/espeak-ng/espeak-ng)
102
+
103
+ The inference code was originally MIT licensed by the paper author. Note that this card applies only to this model, Kokoro. Original models published by the paper author can be found at [hf.co/yl4579](https://huggingface.co/yl4579).
104
+
105
+ ### Evaluation
106
+
107
+ **Metric:** Elo rating
108
+
109
+ **Leaderboard:** [hf.co/spaces/Pendrokar/TTS-Spaces-Arena](https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena)
110
+
111
+ ![TTS-Spaces-Arena-25-Dec-2024](demo/TTS-Spaces-Arena-25-Dec-2024.png)
112
+
113
+ The voice ranked in the Arena is a 50-50 mix of Bella and Sarah. For your convenience, this mix is included in this repository as `af.pt`, but you can trivially reproduce it like this:
114
+
115
+ ```py
116
+ import torch
117
+ bella = torch.load('voices/af_bella.pt', weights_only=True)
118
+ sarah = torch.load('voices/af_sarah.pt', weights_only=True)
119
+ af = torch.mean(torch.stack([bella, sarah]), dim=0)
120
+ assert torch.equal(af, torch.load('voices/af.pt', weights_only=True))
121
+ ```
122
+
123
+ ### Training Details
124
+
125
+ **Compute:** Kokoro v0.19 was trained on A100 80GB vRAM instances for approximately 500 total GPU hours. The average cost for each GPU hour was around $0.80, so the total cost was around $400.
126
+
127
+ **Data:** Kokoro was trained exclusively on **permissive/non-copyrighted audio data** and IPA phoneme labels. Examples of permissive/non-copyrighted audio include:
128
+ - Public domain audio
129
+ - Audio licensed under Apache, MIT, etc
130
+ - Synthetic audio<sup>[1]</sup> generated by closed<sup>[2]</sup> TTS models from large providers<br/>
131
+ [1] https://copyright.gov/ai/ai_policy_guidance.pdf<br/>
132
+ [2] No synthetic audio from open TTS models or "custom voice clones"
133
+
134
+ **Epochs:** Less than **20 epochs**
135
+
136
+ **Total Dataset Size:** Less than **100 hours** of audio
137
+
138
+ ### Limitations
139
+
140
+ Kokoro v0.19 is limited in some specific ways, due to its training set and/or architecture:
141
+ - [Data] Lacks voice cloning capability, likely due to small <100h training set
142
+ - [Arch] Relies on external g2p (espeak-ng), which introduces a class of g2p failure modes
143
+ - [Data] Training dataset is mostly long-form reading and narration, not conversation
144
+ - [Arch] At 82M params, Kokoro almost certainly falls to a well-trained 1B+ param diffusion transformer, or a many-billion-param MLLM like GPT-4o / Gemini 2.0 Flash
145
+ - [Data] Multilingual capability is architecturally feasible, but training data is mostly English
146
+
147
+ Refer to the [Philosophy discussion](https://huggingface.co/hexgrad/Kokoro-82M/discussions/5) to better understand these limitations.
148
+
149
+ **Will the other voicepacks be released?** There is currently no release date scheduled for the other voicepacks, but in the meantime you can try them in the hosted demo at [hf.co/spaces/hexgrad/Kokoro-TTS](https://huggingface.co/spaces/hexgrad/Kokoro-TTS).
150
+
151
+ ### Acknowledgements
152
+ - [@yl4579](https://huggingface.co/yl4579) for architecting StyleTTS 2
153
+ - [@Pendrokar](https://huggingface.co/Pendrokar) for adding Kokoro as a contender in the TTS Spaces Arena
154
+
155
+ ### Model Card Contact
156
+
157
+ `@rzvzn` on Discord. Server invite: https://discord.gg/QuGxSWBfQy
158
+
159
+ <img src="https://static0.gamerantimages.com/wordpress/wp-content/uploads/2024/08/terminator-zero-41-1.jpg" width="400" alt="kokoro" />
160
+
161
+ https://terminator.fandom.com/wiki/Kokoro
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "decoder": {
3
+ "type": "istftnet",
4
+ "upsample_kernel_sizes": [20, 12],
5
+ "upsample_rates": [10, 6],
6
+ "gen_istft_hop_size": 5,
7
+ "gen_istft_n_fft": 20,
8
+ "resblock_dilation_sizes": [
9
+ [1, 3, 5],
10
+ [1, 3, 5],
11
+ [1, 3, 5]
12
+ ],
13
+ "resblock_kernel_sizes": [3, 7, 11],
14
+ "upsample_initial_channel": 512
15
+ },
16
+ "dim_in": 64,
17
+ "dropout": 0.2,
18
+ "hidden_dim": 512,
19
+ "max_conv_dim": 512,
20
+ "max_dur": 50,
21
+ "multispeaker": true,
22
+ "n_layer": 3,
23
+ "n_mels": 80,
24
+ "n_token": 178,
25
+ "style_dim": 128
26
+ }
fp16/halve.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from hashlib import sha256
2
+ from pathlib import Path
3
+ import torch
4
+
5
+ path = Path(__file__).parent.parent / 'kokoro-v0_19.pth'
6
+ assert path.exists(), f'No model pth found at {path}'
7
+
8
+ net = torch.load(path, map_location='cpu', weights_only=True)['net']
9
+ for a in net:
10
+ for b in net[a]:
11
+ net[a][b] = net[a][b].half()
12
+
13
+ torch.save(dict(net=net), 'kokoro-v0_19-half.pth')
14
+ with open('kokoro-v0_19-half.pth', 'rb') as rb:
15
+ h = sha256(rb.read()).hexdigest()
16
+
17
+ assert h == '70cbf37f84610967f2ca72dadb95456fdd8b6c72cdd6dc7372c50f525889ff0c', h
fp16/kokoro-v0_19-half.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70cbf37f84610967f2ca72dadb95456fdd8b6c72cdd6dc7372c50f525889ff0c
3
+ size 163731194
istftnet.py ADDED
@@ -0,0 +1,523 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/yl4579/StyleTTS2/blob/main/Modules/istftnet.py
2
+ from scipy.signal import get_window
3
+ from torch.nn import Conv1d, ConvTranspose1d
4
+ from torch.nn.utils import weight_norm, remove_weight_norm
5
+ import numpy as np
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.nn.functional as F
9
+
10
+ # https://github.com/yl4579/StyleTTS2/blob/main/Modules/utils.py
11
+ def init_weights(m, mean=0.0, std=0.01):
12
+ classname = m.__class__.__name__
13
+ if classname.find("Conv") != -1:
14
+ m.weight.data.normal_(mean, std)
15
+
16
+ def get_padding(kernel_size, dilation=1):
17
+ return int((kernel_size*dilation - dilation)/2)
18
+
19
+ LRELU_SLOPE = 0.1
20
+
21
+ class AdaIN1d(nn.Module):
22
+ def __init__(self, style_dim, num_features):
23
+ super().__init__()
24
+ self.norm = nn.InstanceNorm1d(num_features, affine=False)
25
+ self.fc = nn.Linear(style_dim, num_features*2)
26
+
27
+ def forward(self, x, s):
28
+ h = self.fc(s)
29
+ h = h.view(h.size(0), h.size(1), 1)
30
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
31
+ return (1 + gamma) * self.norm(x) + beta
32
+
33
+ class AdaINResBlock1(torch.nn.Module):
34
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
35
+ super(AdaINResBlock1, self).__init__()
36
+ self.convs1 = nn.ModuleList([
37
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
38
+ padding=get_padding(kernel_size, dilation[0]))),
39
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
40
+ padding=get_padding(kernel_size, dilation[1]))),
41
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
42
+ padding=get_padding(kernel_size, dilation[2])))
43
+ ])
44
+ self.convs1.apply(init_weights)
45
+
46
+ self.convs2 = nn.ModuleList([
47
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
48
+ padding=get_padding(kernel_size, 1))),
49
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
50
+ padding=get_padding(kernel_size, 1))),
51
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
52
+ padding=get_padding(kernel_size, 1)))
53
+ ])
54
+ self.convs2.apply(init_weights)
55
+
56
+ self.adain1 = nn.ModuleList([
57
+ AdaIN1d(style_dim, channels),
58
+ AdaIN1d(style_dim, channels),
59
+ AdaIN1d(style_dim, channels),
60
+ ])
61
+
62
+ self.adain2 = nn.ModuleList([
63
+ AdaIN1d(style_dim, channels),
64
+ AdaIN1d(style_dim, channels),
65
+ AdaIN1d(style_dim, channels),
66
+ ])
67
+
68
+ self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
69
+ self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
70
+
71
+
72
+ def forward(self, x, s):
73
+ for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
74
+ xt = n1(x, s)
75
+ xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
76
+ xt = c1(xt)
77
+ xt = n2(xt, s)
78
+ xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
79
+ xt = c2(xt)
80
+ x = xt + x
81
+ return x
82
+
83
+ def remove_weight_norm(self):
84
+ for l in self.convs1:
85
+ remove_weight_norm(l)
86
+ for l in self.convs2:
87
+ remove_weight_norm(l)
88
+
89
+ class TorchSTFT(torch.nn.Module):
90
+ def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
91
+ super().__init__()
92
+ self.filter_length = filter_length
93
+ self.hop_length = hop_length
94
+ self.win_length = win_length
95
+ self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
96
+
97
+ def transform(self, input_data):
98
+ forward_transform = torch.stft(
99
+ input_data,
100
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
101
+ return_complex=True)
102
+
103
+ return torch.abs(forward_transform), torch.angle(forward_transform)
104
+
105
+ def inverse(self, magnitude, phase):
106
+ inverse_transform = torch.istft(
107
+ magnitude * torch.exp(phase * 1j),
108
+ self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
109
+
110
+ return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
111
+
112
+ def forward(self, input_data):
113
+ self.magnitude, self.phase = self.transform(input_data)
114
+ reconstruction = self.inverse(self.magnitude, self.phase)
115
+ return reconstruction
116
+
117
+ class SineGen(torch.nn.Module):
118
+ """ Definition of sine generator
119
+ SineGen(samp_rate, harmonic_num = 0,
120
+ sine_amp = 0.1, noise_std = 0.003,
121
+ voiced_threshold = 0,
122
+ flag_for_pulse=False)
123
+ samp_rate: sampling rate in Hz
124
+ harmonic_num: number of harmonic overtones (default 0)
125
+ sine_amp: amplitude of sine-wavefrom (default 0.1)
126
+ noise_std: std of Gaussian noise (default 0.003)
127
+ voiced_thoreshold: F0 threshold for U/V classification (default 0)
128
+ flag_for_pulse: this SinGen is used inside PulseGen (default False)
129
+ Note: when flag_for_pulse is True, the first time step of a voiced
130
+ segment is always sin(np.pi) or cos(0)
131
+ """
132
+
133
+ def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
134
+ sine_amp=0.1, noise_std=0.003,
135
+ voiced_threshold=0,
136
+ flag_for_pulse=False):
137
+ super(SineGen, self).__init__()
138
+ self.sine_amp = sine_amp
139
+ self.noise_std = noise_std
140
+ self.harmonic_num = harmonic_num
141
+ self.dim = self.harmonic_num + 1
142
+ self.sampling_rate = samp_rate
143
+ self.voiced_threshold = voiced_threshold
144
+ self.flag_for_pulse = flag_for_pulse
145
+ self.upsample_scale = upsample_scale
146
+
147
+ def _f02uv(self, f0):
148
+ # generate uv signal
149
+ uv = (f0 > self.voiced_threshold).type(torch.float32)
150
+ return uv
151
+
152
+ def _f02sine(self, f0_values):
153
+ """ f0_values: (batchsize, length, dim)
154
+ where dim indicates fundamental tone and overtones
155
+ """
156
+ # convert to F0 in rad. The interger part n can be ignored
157
+ # because 2 * np.pi * n doesn't affect phase
158
+ rad_values = (f0_values / self.sampling_rate) % 1
159
+
160
+ # initial phase noise (no noise for fundamental component)
161
+ rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
162
+ device=f0_values.device)
163
+ rand_ini[:, 0] = 0
164
+ rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
165
+
166
+ # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
167
+ if not self.flag_for_pulse:
168
+ # # for normal case
169
+
170
+ # # To prevent torch.cumsum numerical overflow,
171
+ # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
172
+ # # Buffer tmp_over_one_idx indicates the time step to add -1.
173
+ # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
174
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
175
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
176
+ # cumsum_shift = torch.zeros_like(rad_values)
177
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
178
+
179
+ # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
180
+ rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
181
+ scale_factor=1/self.upsample_scale,
182
+ mode="linear").transpose(1, 2)
183
+
184
+ # tmp_over_one = torch.cumsum(rad_values, 1) % 1
185
+ # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
186
+ # cumsum_shift = torch.zeros_like(rad_values)
187
+ # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
188
+
189
+ phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
190
+ phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
191
+ scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
192
+ sines = torch.sin(phase)
193
+
194
+ else:
195
+ # If necessary, make sure that the first time step of every
196
+ # voiced segments is sin(pi) or cos(0)
197
+ # This is used for pulse-train generation
198
+
199
+ # identify the last time step in unvoiced segments
200
+ uv = self._f02uv(f0_values)
201
+ uv_1 = torch.roll(uv, shifts=-1, dims=1)
202
+ uv_1[:, -1, :] = 1
203
+ u_loc = (uv < 1) * (uv_1 > 0)
204
+
205
+ # get the instantanouse phase
206
+ tmp_cumsum = torch.cumsum(rad_values, dim=1)
207
+ # different batch needs to be processed differently
208
+ for idx in range(f0_values.shape[0]):
209
+ temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
210
+ temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
211
+ # stores the accumulation of i.phase within
212
+ # each voiced segments
213
+ tmp_cumsum[idx, :, :] = 0
214
+ tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
215
+
216
+ # rad_values - tmp_cumsum: remove the accumulation of i.phase
217
+ # within the previous voiced segment.
218
+ i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
219
+
220
+ # get the sines
221
+ sines = torch.cos(i_phase * 2 * np.pi)
222
+ return sines
223
+
224
+ def forward(self, f0):
225
+ """ sine_tensor, uv = forward(f0)
226
+ input F0: tensor(batchsize=1, length, dim=1)
227
+ f0 for unvoiced steps should be 0
228
+ output sine_tensor: tensor(batchsize=1, length, dim)
229
+ output uv: tensor(batchsize=1, length, 1)
230
+ """
231
+ f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
232
+ device=f0.device)
233
+ # fundamental component
234
+ fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
235
+
236
+ # generate sine waveforms
237
+ sine_waves = self._f02sine(fn) * self.sine_amp
238
+
239
+ # generate uv signal
240
+ # uv = torch.ones(f0.shape)
241
+ # uv = uv * (f0 > self.voiced_threshold)
242
+ uv = self._f02uv(f0)
243
+
244
+ # noise: for unvoiced should be similar to sine_amp
245
+ # std = self.sine_amp/3 -> max value ~ self.sine_amp
246
+ # . for voiced regions is self.noise_std
247
+ noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
248
+ noise = noise_amp * torch.randn_like(sine_waves)
249
+
250
+ # first: set the unvoiced part to 0 by uv
251
+ # then: additive noise
252
+ sine_waves = sine_waves * uv + noise
253
+ return sine_waves, uv, noise
254
+
255
+
256
+ class SourceModuleHnNSF(torch.nn.Module):
257
+ """ SourceModule for hn-nsf
258
+ SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
259
+ add_noise_std=0.003, voiced_threshod=0)
260
+ sampling_rate: sampling_rate in Hz
261
+ harmonic_num: number of harmonic above F0 (default: 0)
262
+ sine_amp: amplitude of sine source signal (default: 0.1)
263
+ add_noise_std: std of additive Gaussian noise (default: 0.003)
264
+ note that amplitude of noise in unvoiced is decided
265
+ by sine_amp
266
+ voiced_threshold: threhold to set U/V given F0 (default: 0)
267
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
268
+ F0_sampled (batchsize, length, 1)
269
+ Sine_source (batchsize, length, 1)
270
+ noise_source (batchsize, length 1)
271
+ uv (batchsize, length, 1)
272
+ """
273
+
274
+ def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
275
+ add_noise_std=0.003, voiced_threshod=0):
276
+ super(SourceModuleHnNSF, self).__init__()
277
+
278
+ self.sine_amp = sine_amp
279
+ self.noise_std = add_noise_std
280
+
281
+ # to produce sine waveforms
282
+ self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
283
+ sine_amp, add_noise_std, voiced_threshod)
284
+
285
+ # to merge source harmonics into a single excitation
286
+ self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
287
+ self.l_tanh = torch.nn.Tanh()
288
+
289
+ def forward(self, x):
290
+ """
291
+ Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
292
+ F0_sampled (batchsize, length, 1)
293
+ Sine_source (batchsize, length, 1)
294
+ noise_source (batchsize, length 1)
295
+ """
296
+ # source for harmonic branch
297
+ with torch.no_grad():
298
+ sine_wavs, uv, _ = self.l_sin_gen(x)
299
+ sine_merge = self.l_tanh(self.l_linear(sine_wavs))
300
+
301
+ # source for noise branch, in the same shape as uv
302
+ noise = torch.randn_like(uv) * self.sine_amp / 3
303
+ return sine_merge, noise, uv
304
+ def padDiff(x):
305
+ return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
306
+
307
+
308
+ class Generator(torch.nn.Module):
309
+ def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
310
+ super(Generator, self).__init__()
311
+
312
+ self.num_kernels = len(resblock_kernel_sizes)
313
+ self.num_upsamples = len(upsample_rates)
314
+ resblock = AdaINResBlock1
315
+
316
+ self.m_source = SourceModuleHnNSF(
317
+ sampling_rate=24000,
318
+ upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
319
+ harmonic_num=8, voiced_threshod=10)
320
+ self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
321
+ self.noise_convs = nn.ModuleList()
322
+ self.noise_res = nn.ModuleList()
323
+
324
+ self.ups = nn.ModuleList()
325
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
326
+ self.ups.append(weight_norm(
327
+ ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
328
+ k, u, padding=(k-u)//2)))
329
+
330
+ self.resblocks = nn.ModuleList()
331
+ for i in range(len(self.ups)):
332
+ ch = upsample_initial_channel//(2**(i+1))
333
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
334
+ self.resblocks.append(resblock(ch, k, d, style_dim))
335
+
336
+ c_cur = upsample_initial_channel // (2 ** (i + 1))
337
+
338
+ if i + 1 < len(upsample_rates): #
339
+ stride_f0 = np.prod(upsample_rates[i + 1:])
340
+ self.noise_convs.append(Conv1d(
341
+ gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
342
+ self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
343
+ else:
344
+ self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
345
+ self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
346
+
347
+
348
+ self.post_n_fft = gen_istft_n_fft
349
+ self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
350
+ self.ups.apply(init_weights)
351
+ self.conv_post.apply(init_weights)
352
+ self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
353
+ self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
354
+
355
+
356
+ def forward(self, x, s, f0):
357
+ with torch.no_grad():
358
+ f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
359
+
360
+ har_source, noi_source, uv = self.m_source(f0)
361
+ har_source = har_source.transpose(1, 2).squeeze(1)
362
+ har_spec, har_phase = self.stft.transform(har_source)
363
+ har = torch.cat([har_spec, har_phase], dim=1)
364
+
365
+ for i in range(self.num_upsamples):
366
+ x = F.leaky_relu(x, LRELU_SLOPE)
367
+ x_source = self.noise_convs[i](har)
368
+ x_source = self.noise_res[i](x_source, s)
369
+
370
+ x = self.ups[i](x)
371
+ if i == self.num_upsamples - 1:
372
+ x = self.reflection_pad(x)
373
+
374
+ x = x + x_source
375
+ xs = None
376
+ for j in range(self.num_kernels):
377
+ if xs is None:
378
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
379
+ else:
380
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
381
+ x = xs / self.num_kernels
382
+ x = F.leaky_relu(x)
383
+ x = self.conv_post(x)
384
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
385
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
386
+ return self.stft.inverse(spec, phase)
387
+
388
+ def fw_phase(self, x, s):
389
+ for i in range(self.num_upsamples):
390
+ x = F.leaky_relu(x, LRELU_SLOPE)
391
+ x = self.ups[i](x)
392
+ xs = None
393
+ for j in range(self.num_kernels):
394
+ if xs is None:
395
+ xs = self.resblocks[i*self.num_kernels+j](x, s)
396
+ else:
397
+ xs += self.resblocks[i*self.num_kernels+j](x, s)
398
+ x = xs / self.num_kernels
399
+ x = F.leaky_relu(x)
400
+ x = self.reflection_pad(x)
401
+ x = self.conv_post(x)
402
+ spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
403
+ phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
404
+ return spec, phase
405
+
406
+ def remove_weight_norm(self):
407
+ print('Removing weight norm...')
408
+ for l in self.ups:
409
+ remove_weight_norm(l)
410
+ for l in self.resblocks:
411
+ l.remove_weight_norm()
412
+ remove_weight_norm(self.conv_pre)
413
+ remove_weight_norm(self.conv_post)
414
+
415
+
416
+ class AdainResBlk1d(nn.Module):
417
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
418
+ upsample='none', dropout_p=0.0):
419
+ super().__init__()
420
+ self.actv = actv
421
+ self.upsample_type = upsample
422
+ self.upsample = UpSample1d(upsample)
423
+ self.learned_sc = dim_in != dim_out
424
+ self._build_weights(dim_in, dim_out, style_dim)
425
+ self.dropout = nn.Dropout(dropout_p)
426
+
427
+ if upsample == 'none':
428
+ self.pool = nn.Identity()
429
+ else:
430
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
431
+
432
+
433
+ def _build_weights(self, dim_in, dim_out, style_dim):
434
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
435
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
436
+ self.norm1 = AdaIN1d(style_dim, dim_in)
437
+ self.norm2 = AdaIN1d(style_dim, dim_out)
438
+ if self.learned_sc:
439
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
440
+
441
+ def _shortcut(self, x):
442
+ x = self.upsample(x)
443
+ if self.learned_sc:
444
+ x = self.conv1x1(x)
445
+ return x
446
+
447
+ def _residual(self, x, s):
448
+ x = self.norm1(x, s)
449
+ x = self.actv(x)
450
+ x = self.pool(x)
451
+ x = self.conv1(self.dropout(x))
452
+ x = self.norm2(x, s)
453
+ x = self.actv(x)
454
+ x = self.conv2(self.dropout(x))
455
+ return x
456
+
457
+ def forward(self, x, s):
458
+ out = self._residual(x, s)
459
+ out = (out + self._shortcut(x)) / np.sqrt(2)
460
+ return out
461
+
462
+ class UpSample1d(nn.Module):
463
+ def __init__(self, layer_type):
464
+ super().__init__()
465
+ self.layer_type = layer_type
466
+
467
+ def forward(self, x):
468
+ if self.layer_type == 'none':
469
+ return x
470
+ else:
471
+ return F.interpolate(x, scale_factor=2, mode='nearest')
472
+
473
+ class Decoder(nn.Module):
474
+ def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
475
+ resblock_kernel_sizes = [3,7,11],
476
+ upsample_rates = [10, 6],
477
+ upsample_initial_channel=512,
478
+ resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
479
+ upsample_kernel_sizes=[20, 12],
480
+ gen_istft_n_fft=20, gen_istft_hop_size=5):
481
+ super().__init__()
482
+
483
+ self.decode = nn.ModuleList()
484
+
485
+ self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
486
+
487
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
488
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
489
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
490
+ self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
491
+
492
+ self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
493
+
494
+ self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
495
+
496
+ self.asr_res = nn.Sequential(
497
+ weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
498
+ )
499
+
500
+
501
+ self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
502
+ upsample_initial_channel, resblock_dilation_sizes,
503
+ upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
504
+
505
+ def forward(self, asr, F0_curve, N, s):
506
+ F0 = self.F0_conv(F0_curve.unsqueeze(1))
507
+ N = self.N_conv(N.unsqueeze(1))
508
+
509
+ x = torch.cat([asr, F0, N], axis=1)
510
+ x = self.encode(x, s)
511
+
512
+ asr_res = self.asr_res(asr)
513
+
514
+ res = True
515
+ for block in self.decode:
516
+ if res:
517
+ x = torch.cat([x, asr_res, F0, N], axis=1)
518
+ x = block(x, s)
519
+ if block.upsample_type != "none":
520
+ res = False
521
+
522
+ x = self.generator(x, s, F0_curve)
523
+ return x
kokoro-v0_19.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebef42457f7efee9b60b4f1d5aec7692f2925923948a0d7a2a49d2c9edf57e49
3
+ size 345554732
kokoro-v0_19.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b0c392f87508da38fad3a2f9d94c359f1b657ebd2ef79f9d56d69503e470b0a
3
+ size 327211206
kokoro.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import phonemizer
2
+ import re
3
+ import torch
4
+ import numpy as np
5
+
6
+ def split_num(num):
7
+ num = num.group()
8
+ if '.' in num:
9
+ return num
10
+ elif ':' in num:
11
+ h, m = [int(n) for n in num.split(':')]
12
+ if m == 0:
13
+ return f"{h} o'clock"
14
+ elif m < 10:
15
+ return f'{h} oh {m}'
16
+ return f'{h} {m}'
17
+ year = int(num[:4])
18
+ if year < 1100 or year % 1000 < 10:
19
+ return num
20
+ left, right = num[:2], int(num[2:4])
21
+ s = 's' if num.endswith('s') else ''
22
+ if 100 <= year % 1000 <= 999:
23
+ if right == 0:
24
+ return f'{left} hundred{s}'
25
+ elif right < 10:
26
+ return f'{left} oh {right}{s}'
27
+ return f'{left} {right}{s}'
28
+
29
+ def flip_money(m):
30
+ m = m.group()
31
+ bill = 'dollar' if m[0] == '$' else 'pound'
32
+ if m[-1].isalpha():
33
+ return f'{m[1:]} {bill}s'
34
+ elif '.' not in m:
35
+ s = '' if m[1:] == '1' else 's'
36
+ return f'{m[1:]} {bill}{s}'
37
+ b, c = m[1:].split('.')
38
+ s = '' if b == '1' else 's'
39
+ c = int(c.ljust(2, '0'))
40
+ coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence')
41
+ return f'{b} {bill}{s} and {c} {coins}'
42
+
43
+ def point_num(num):
44
+ a, b = num.group().split('.')
45
+ return ' point '.join([a, ' '.join(b)])
46
+
47
+ def normalize_text(text):
48
+ text = text.replace(chr(8216), "'").replace(chr(8217), "'")
49
+ text = text.replace('«', chr(8220)).replace('»', chr(8221))
50
+ text = text.replace(chr(8220), '"').replace(chr(8221), '"')
51
+ text = text.replace('(', '«').replace(')', '»')
52
+ for a, b in zip('、。!,:;?', ',.!,:;?'):
53
+ text = text.replace(a, b+' ')
54
+ text = re.sub(r'[^\S \n]', ' ', text)
55
+ text = re.sub(r' +', ' ', text)
56
+ text = re.sub(r'(?<=\n) +(?=\n)', '', text)
57
+ text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text)
58
+ text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text)
59
+ text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text)
60
+ text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text)
61
+ text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text)
62
+ text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text)
63
+ text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text)
64
+ text = re.sub(r'(?<=\d),(?=\d)', '', text)
65
+ text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text)
66
+ text = re.sub(r'\d*\.\d+', point_num, text)
67
+ text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text)
68
+ text = re.sub(r'(?<=\d)S', ' S', text)
69
+ text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text)
70
+ text = re.sub(r"(?<=X')S\b", 's', text)
71
+ text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text)
72
+ text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text)
73
+ return text.strip()
74
+
75
+ def get_vocab():
76
+ _pad = "$"
77
+ _punctuation = ';:,.!?¡¿—…"«»“” '
78
+ _letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
79
+ _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
80
+ symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
81
+ dicts = {}
82
+ for i in range(len((symbols))):
83
+ dicts[symbols[i]] = i
84
+ return dicts
85
+
86
+ VOCAB = get_vocab()
87
+ def tokenize(ps):
88
+ return [i for i in map(VOCAB.get, ps) if i is not None]
89
+
90
+ phonemizers = dict(
91
+ a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True),
92
+ b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True),
93
+ )
94
+ def phonemize(text, lang, norm=True):
95
+ if norm:
96
+ text = normalize_text(text)
97
+ ps = phonemizers[lang].phonemize([text])
98
+ ps = ps[0] if ps else ''
99
+ # https://en.wiktionary.org/wiki/kokoro#English
100
+ ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ')
101
+ ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l')
102
+ ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps)
103
+ ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps)
104
+ if lang == 'a':
105
+ ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps)
106
+ ps = ''.join(filter(lambda p: p in VOCAB, ps))
107
+ return ps.strip()
108
+
109
+ def length_to_mask(lengths):
110
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
111
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
112
+ return mask
113
+
114
+ @torch.no_grad()
115
+ def forward(model, tokens, ref_s, speed):
116
+ device = ref_s.device
117
+ tokens = torch.LongTensor([[0, *tokens, 0]]).to(device)
118
+ input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
119
+ text_mask = length_to_mask(input_lengths).to(device)
120
+ bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
121
+ d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
122
+ s = ref_s[:, 128:]
123
+ d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
124
+ x, _ = model.predictor.lstm(d)
125
+ duration = model.predictor.duration_proj(x)
126
+ duration = torch.sigmoid(duration).sum(axis=-1) / speed
127
+ pred_dur = torch.round(duration).clamp(min=1).long()
128
+ pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item())
129
+ c_frame = 0
130
+ for i in range(pred_aln_trg.size(0)):
131
+ pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1
132
+ c_frame += pred_dur[0,i].item()
133
+ en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
134
+ F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
135
+ t_en = model.text_encoder(tokens, input_lengths, text_mask)
136
+ asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
137
+ return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy()
138
+
139
+ def generate(model, text, voicepack, lang='a', speed=1, ps=None):
140
+ ps = ps or phonemize(text, lang)
141
+ tokens = tokenize(ps)
142
+ if not tokens:
143
+ return None
144
+ elif len(tokens) > 510:
145
+ tokens = tokens[:510]
146
+ print('Truncated to 510 tokens')
147
+ ref_s = voicepack[len(tokens)]
148
+ out = forward(model, tokens, ref_s, speed)
149
+ ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
150
+ return out, ps
151
+
152
+ def generate_full(model, text, voicepack, lang='a', speed=1, ps=None):
153
+ ps = ps or phonemize(text, lang)
154
+ tokens = tokenize(ps)
155
+ if not tokens:
156
+ return None
157
+ outs = []
158
+ loop_count = len(tokens)//510 + (1 if len(tokens) % 510 != 0 else 0)
159
+ for i in range(loop_count):
160
+ ref_s = voicepack[len(tokens[i*510:(i+1)*510])]
161
+ out = forward(model, tokens[i*510:(i+1)*510], ref_s, speed)
162
+ outs.append(out)
163
+ outs = np.concatenate(outs)
164
+ ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens)
165
+ return outs, ps
models.py ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/yl4579/StyleTTS2/blob/main/models.py
2
+ from istftnet import AdaIN1d, Decoder
3
+ from munch import Munch
4
+ from pathlib import Path
5
+ from plbert import load_plbert
6
+ from torch.nn.utils import weight_norm, spectral_norm
7
+ import json
8
+ import numpy as np
9
+ import os
10
+ import os.path as osp
11
+ import torch
12
+ import torch.nn as nn
13
+ import torch.nn.functional as F
14
+
15
+ class LinearNorm(torch.nn.Module):
16
+ def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
17
+ super(LinearNorm, self).__init__()
18
+ self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
19
+
20
+ torch.nn.init.xavier_uniform_(
21
+ self.linear_layer.weight,
22
+ gain=torch.nn.init.calculate_gain(w_init_gain))
23
+
24
+ def forward(self, x):
25
+ return self.linear_layer(x)
26
+
27
+ class LayerNorm(nn.Module):
28
+ def __init__(self, channels, eps=1e-5):
29
+ super().__init__()
30
+ self.channels = channels
31
+ self.eps = eps
32
+
33
+ self.gamma = nn.Parameter(torch.ones(channels))
34
+ self.beta = nn.Parameter(torch.zeros(channels))
35
+
36
+ def forward(self, x):
37
+ x = x.transpose(1, -1)
38
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
39
+ return x.transpose(1, -1)
40
+
41
+ class TextEncoder(nn.Module):
42
+ def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
43
+ super().__init__()
44
+ self.embedding = nn.Embedding(n_symbols, channels)
45
+
46
+ padding = (kernel_size - 1) // 2
47
+ self.cnn = nn.ModuleList()
48
+ for _ in range(depth):
49
+ self.cnn.append(nn.Sequential(
50
+ weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
51
+ LayerNorm(channels),
52
+ actv,
53
+ nn.Dropout(0.2),
54
+ ))
55
+ # self.cnn = nn.Sequential(*self.cnn)
56
+
57
+ self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
58
+
59
+ def forward(self, x, input_lengths, m):
60
+ x = self.embedding(x) # [B, T, emb]
61
+ x = x.transpose(1, 2) # [B, emb, T]
62
+ m = m.to(input_lengths.device).unsqueeze(1)
63
+ x.masked_fill_(m, 0.0)
64
+
65
+ for c in self.cnn:
66
+ x = c(x)
67
+ x.masked_fill_(m, 0.0)
68
+
69
+ x = x.transpose(1, 2) # [B, T, chn]
70
+
71
+ input_lengths = input_lengths.cpu().numpy()
72
+ x = nn.utils.rnn.pack_padded_sequence(
73
+ x, input_lengths, batch_first=True, enforce_sorted=False)
74
+
75
+ self.lstm.flatten_parameters()
76
+ x, _ = self.lstm(x)
77
+ x, _ = nn.utils.rnn.pad_packed_sequence(
78
+ x, batch_first=True)
79
+
80
+ x = x.transpose(-1, -2)
81
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
82
+
83
+ x_pad[:, :, :x.shape[-1]] = x
84
+ x = x_pad.to(x.device)
85
+
86
+ x.masked_fill_(m, 0.0)
87
+
88
+ return x
89
+
90
+ def inference(self, x):
91
+ x = self.embedding(x)
92
+ x = x.transpose(1, 2)
93
+ x = self.cnn(x)
94
+ x = x.transpose(1, 2)
95
+ self.lstm.flatten_parameters()
96
+ x, _ = self.lstm(x)
97
+ return x
98
+
99
+ def length_to_mask(self, lengths):
100
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
101
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
102
+ return mask
103
+
104
+
105
+ class UpSample1d(nn.Module):
106
+ def __init__(self, layer_type):
107
+ super().__init__()
108
+ self.layer_type = layer_type
109
+
110
+ def forward(self, x):
111
+ if self.layer_type == 'none':
112
+ return x
113
+ else:
114
+ return F.interpolate(x, scale_factor=2, mode='nearest')
115
+
116
+ class AdainResBlk1d(nn.Module):
117
+ def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
118
+ upsample='none', dropout_p=0.0):
119
+ super().__init__()
120
+ self.actv = actv
121
+ self.upsample_type = upsample
122
+ self.upsample = UpSample1d(upsample)
123
+ self.learned_sc = dim_in != dim_out
124
+ self._build_weights(dim_in, dim_out, style_dim)
125
+ self.dropout = nn.Dropout(dropout_p)
126
+
127
+ if upsample == 'none':
128
+ self.pool = nn.Identity()
129
+ else:
130
+ self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
131
+
132
+
133
+ def _build_weights(self, dim_in, dim_out, style_dim):
134
+ self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
135
+ self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
136
+ self.norm1 = AdaIN1d(style_dim, dim_in)
137
+ self.norm2 = AdaIN1d(style_dim, dim_out)
138
+ if self.learned_sc:
139
+ self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
140
+
141
+ def _shortcut(self, x):
142
+ x = self.upsample(x)
143
+ if self.learned_sc:
144
+ x = self.conv1x1(x)
145
+ return x
146
+
147
+ def _residual(self, x, s):
148
+ x = self.norm1(x, s)
149
+ x = self.actv(x)
150
+ x = self.pool(x)
151
+ x = self.conv1(self.dropout(x))
152
+ x = self.norm2(x, s)
153
+ x = self.actv(x)
154
+ x = self.conv2(self.dropout(x))
155
+ return x
156
+
157
+ def forward(self, x, s):
158
+ out = self._residual(x, s)
159
+ out = (out + self._shortcut(x)) / np.sqrt(2)
160
+ return out
161
+
162
+ class AdaLayerNorm(nn.Module):
163
+ def __init__(self, style_dim, channels, eps=1e-5):
164
+ super().__init__()
165
+ self.channels = channels
166
+ self.eps = eps
167
+
168
+ self.fc = nn.Linear(style_dim, channels*2)
169
+
170
+ def forward(self, x, s):
171
+ x = x.transpose(-1, -2)
172
+ x = x.transpose(1, -1)
173
+
174
+ h = self.fc(s)
175
+ h = h.view(h.size(0), h.size(1), 1)
176
+ gamma, beta = torch.chunk(h, chunks=2, dim=1)
177
+ gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
178
+
179
+
180
+ x = F.layer_norm(x, (self.channels,), eps=self.eps)
181
+ x = (1 + gamma) * x + beta
182
+ return x.transpose(1, -1).transpose(-1, -2)
183
+
184
+ class ProsodyPredictor(nn.Module):
185
+
186
+ def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
187
+ super().__init__()
188
+
189
+ self.text_encoder = DurationEncoder(sty_dim=style_dim,
190
+ d_model=d_hid,
191
+ nlayers=nlayers,
192
+ dropout=dropout)
193
+
194
+ self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
195
+ self.duration_proj = LinearNorm(d_hid, max_dur)
196
+
197
+ self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
198
+ self.F0 = nn.ModuleList()
199
+ self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
200
+ self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
201
+ self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
202
+
203
+ self.N = nn.ModuleList()
204
+ self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
205
+ self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
206
+ self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
207
+
208
+ self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
209
+ self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
210
+
211
+
212
+ def forward(self, texts, style, text_lengths, alignment, m):
213
+ d = self.text_encoder(texts, style, text_lengths, m)
214
+
215
+ batch_size = d.shape[0]
216
+ text_size = d.shape[1]
217
+
218
+ # predict duration
219
+ input_lengths = text_lengths.cpu().numpy()
220
+ x = nn.utils.rnn.pack_padded_sequence(
221
+ d, input_lengths, batch_first=True, enforce_sorted=False)
222
+
223
+ m = m.to(text_lengths.device).unsqueeze(1)
224
+
225
+ self.lstm.flatten_parameters()
226
+ x, _ = self.lstm(x)
227
+ x, _ = nn.utils.rnn.pad_packed_sequence(
228
+ x, batch_first=True)
229
+
230
+ x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
231
+
232
+ x_pad[:, :x.shape[1], :] = x
233
+ x = x_pad.to(x.device)
234
+
235
+ duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
236
+
237
+ en = (d.transpose(-1, -2) @ alignment)
238
+
239
+ return duration.squeeze(-1), en
240
+
241
+ def F0Ntrain(self, x, s):
242
+ x, _ = self.shared(x.transpose(-1, -2))
243
+
244
+ F0 = x.transpose(-1, -2)
245
+ for block in self.F0:
246
+ F0 = block(F0, s)
247
+ F0 = self.F0_proj(F0)
248
+
249
+ N = x.transpose(-1, -2)
250
+ for block in self.N:
251
+ N = block(N, s)
252
+ N = self.N_proj(N)
253
+
254
+ return F0.squeeze(1), N.squeeze(1)
255
+
256
+ def length_to_mask(self, lengths):
257
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
258
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
259
+ return mask
260
+
261
+ class DurationEncoder(nn.Module):
262
+
263
+ def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
264
+ super().__init__()
265
+ self.lstms = nn.ModuleList()
266
+ for _ in range(nlayers):
267
+ self.lstms.append(nn.LSTM(d_model + sty_dim,
268
+ d_model // 2,
269
+ num_layers=1,
270
+ batch_first=True,
271
+ bidirectional=True,
272
+ dropout=dropout))
273
+ self.lstms.append(AdaLayerNorm(sty_dim, d_model))
274
+
275
+
276
+ self.dropout = dropout
277
+ self.d_model = d_model
278
+ self.sty_dim = sty_dim
279
+
280
+ def forward(self, x, style, text_lengths, m):
281
+ masks = m.to(text_lengths.device)
282
+
283
+ x = x.permute(2, 0, 1)
284
+ s = style.expand(x.shape[0], x.shape[1], -1)
285
+ x = torch.cat([x, s], axis=-1)
286
+ x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
287
+
288
+ x = x.transpose(0, 1)
289
+ input_lengths = text_lengths.cpu().numpy()
290
+ x = x.transpose(-1, -2)
291
+
292
+ for block in self.lstms:
293
+ if isinstance(block, AdaLayerNorm):
294
+ x = block(x.transpose(-1, -2), style).transpose(-1, -2)
295
+ x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
296
+ x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
297
+ else:
298
+ x = x.transpose(-1, -2)
299
+ x = nn.utils.rnn.pack_padded_sequence(
300
+ x, input_lengths, batch_first=True, enforce_sorted=False)
301
+ block.flatten_parameters()
302
+ x, _ = block(x)
303
+ x, _ = nn.utils.rnn.pad_packed_sequence(
304
+ x, batch_first=True)
305
+ x = F.dropout(x, p=self.dropout, training=self.training)
306
+ x = x.transpose(-1, -2)
307
+
308
+ x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
309
+
310
+ x_pad[:, :, :x.shape[-1]] = x
311
+ x = x_pad.to(x.device)
312
+
313
+ return x.transpose(-1, -2)
314
+
315
+ def inference(self, x, style):
316
+ x = self.embedding(x.transpose(-1, -2)) * np.sqrt(self.d_model)
317
+ style = style.expand(x.shape[0], x.shape[1], -1)
318
+ x = torch.cat([x, style], axis=-1)
319
+ src = self.pos_encoder(x)
320
+ output = self.transformer_encoder(src).transpose(0, 1)
321
+ return output
322
+
323
+ def length_to_mask(self, lengths):
324
+ mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
325
+ mask = torch.gt(mask+1, lengths.unsqueeze(1))
326
+ return mask
327
+
328
+ # https://github.com/yl4579/StyleTTS2/blob/main/utils.py
329
+ def recursive_munch(d):
330
+ if isinstance(d, dict):
331
+ return Munch((k, recursive_munch(v)) for k, v in d.items())
332
+ elif isinstance(d, list):
333
+ return [recursive_munch(v) for v in d]
334
+ else:
335
+ return d
336
+
337
+ def build_model(path, device):
338
+ config = Path(__file__).parent / 'config.json'
339
+ assert config.exists(), f'Config path incorrect: config.json not found at {config}'
340
+ with open(config, 'r') as r:
341
+ args = recursive_munch(json.load(r))
342
+ assert args.decoder.type == 'istftnet', f'Unknown decoder type: {args.decoder.type}'
343
+ decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
344
+ resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
345
+ upsample_rates = args.decoder.upsample_rates,
346
+ upsample_initial_channel=args.decoder.upsample_initial_channel,
347
+ resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
348
+ upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
349
+ gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
350
+ text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
351
+ predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
352
+ bert = load_plbert()
353
+ bert_encoder = nn.Linear(bert.config.hidden_size, args.hidden_dim)
354
+ for parent in [bert, bert_encoder, predictor, decoder, text_encoder]:
355
+ for child in parent.children():
356
+ if isinstance(child, nn.RNNBase):
357
+ child.flatten_parameters()
358
+ model = Munch(
359
+ bert=bert.to(device).eval(),
360
+ bert_encoder=bert_encoder.to(device).eval(),
361
+ predictor=predictor.to(device).eval(),
362
+ decoder=decoder.to(device).eval(),
363
+ text_encoder=text_encoder.to(device).eval(),
364
+ )
365
+ for key, state_dict in torch.load(path, map_location='cpu', weights_only=True)['net'].items():
366
+ assert key in model, key
367
+ try:
368
+ model[key].load_state_dict(state_dict)
369
+ except:
370
+ state_dict = {k[7:]: v for k, v in state_dict.items()}
371
+ model[key].load_state_dict(state_dict, strict=False)
372
+ return model
plbert.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # https://github.com/yl4579/StyleTTS2/blob/main/Utils/PLBERT/util.py
2
+ from transformers import AlbertConfig, AlbertModel
3
+
4
+ class CustomAlbert(AlbertModel):
5
+ def forward(self, *args, **kwargs):
6
+ # Call the original forward method
7
+ outputs = super().forward(*args, **kwargs)
8
+ # Only return the last_hidden_state
9
+ return outputs.last_hidden_state
10
+
11
+ def load_plbert():
12
+ plbert_config = {'vocab_size': 178, 'hidden_size': 768, 'num_attention_heads': 12, 'intermediate_size': 2048, 'max_position_embeddings': 512, 'num_hidden_layers': 12, 'dropout': 0.1}
13
+ albert_base_configuration = AlbertConfig(**plbert_config)
14
+ bert = CustomAlbert(albert_base_configuration)
15
+ return bert
voices/af.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fad4192fd8a840f925b0e3fc2be54e20531f91a9ac816a485b7992ca0bd83ebf
3
+ size 524355
voices/af_bella.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2828c6c2f94275ef3441a2edfcf48293298ee0f9b56ce70fb2e344345487b922
3
+ size 524449
voices/af_nicole.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9401802fb0b7080c324dec1a75d60f31d977ced600a99160e095dbc5a1172692
3
+ size 524454
voices/af_sarah.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba7918c4ace6ace4221e7e01eb3a6d16596cba9729850551c758cd2ad3a4cd08
3
+ size 524449
voices/af_sky.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f16f1bb778de36a177ae4b0b6f1e59783d5f4d3bcecf752c3e1ee98299b335e
3
+ size 524375
voices/am_adam.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1921528b400a553f66528c27899d95780918fe33b1ac7e2a871f6a0de475f176
3
+ size 524444
voices/am_michael.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a255c9562c363103adc56c09b7daf837139d3bdaa8bd4dd74847ab1e3e8c28be
3
+ size 524459
voices/bf_emma.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:992e6d8491b8926ef4a16205250e51a21d9924405a5d37e2db6e94adfd965c3b
3
+ size 524365
voices/bf_isabella.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0865a03931230100167f7a81d394b143c072efe2d7e4c4a87b5c54d6283f580
3
+ size 524365
voices/bm_george.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d763dfe13e934357f4d8322b718787d79e32f2181e29ca0cf6aa637d8092b96
3
+ size 524464
voices/bm_lewis.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f70d9ea4d65f522f224628f06d86ea74279faae23bd7e765848a374aba916b76
3
+ size 524449