Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,84 @@
|
|
| 1 |
---
|
| 2 |
license: cc-by-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: cc-by-sa-4.0
|
| 3 |
+
datasets:
|
| 4 |
+
- bigcode/the-stack-dedup
|
| 5 |
+
- sahil2801/CodeAlpaca-20k
|
| 6 |
+
- teknium/GPTeacher-CodeInstruct
|
| 7 |
+
model-base:
|
| 8 |
+
- replit/replit-code-v1-3b
|
| 9 |
+
tags:
|
| 10 |
+
- code
|
| 11 |
+
- instruct
|
| 12 |
+
- self instruct
|
| 13 |
+
language:
|
| 14 |
+
- code
|
| 15 |
+
programming_language:
|
| 16 |
+
- Markdown
|
| 17 |
+
- Java
|
| 18 |
+
- JavaScript
|
| 19 |
+
- Python
|
| 20 |
+
- TypeScript
|
| 21 |
+
- PHP
|
| 22 |
+
- SQL
|
| 23 |
+
- JSX
|
| 24 |
+
- reStructuredText
|
| 25 |
+
- Rust
|
| 26 |
+
- C
|
| 27 |
+
- CSS
|
| 28 |
+
- Go
|
| 29 |
+
- C++
|
| 30 |
+
- HTML
|
| 31 |
+
- Vue
|
| 32 |
+
- Ruby
|
| 33 |
+
- Jupyter Notebook
|
| 34 |
+
- R
|
| 35 |
+
- Shell
|
| 36 |
---
|
| 37 |
+
|
| 38 |
+
Base Model: replit/replit-code-v1-3b
|
| 39 |
+
|
| 40 |
+
This model is fine tuned on both Sahil2801's CodeAlpaca & Teknium's GPTeacher Code-Instruct to give Replit's Code model instruct capabilities.
|
| 41 |
+
|
| 42 |
+
Dataset links:
|
| 43 |
+
CodeAlpaca: https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k
|
| 44 |
+
GPTeacher subset - Code Instruct: https://github.com/teknium1/GPTeacher
|
| 45 |
+
|
| 46 |
+
This model was trained on 2x a100 80gb for 1 hour on ~25,000 code instruction/response pairs in Alpaca format.
|
| 47 |
+
|
| 48 |
+
Refer to the base models HuggingFace model card for some basic requirements to run: https://huggingface.co/replit/replit-code-v1-3b
|
| 49 |
+
|
| 50 |
+
This fine tune can be prompted like any alpaca fine tune:
|
| 51 |
+
```
|
| 52 |
+
### Instruction:
|
| 53 |
+
<prompt>
|
| 54 |
+
|
| 55 |
+
### Input:
|
| 56 |
+
<additional context>
|
| 57 |
+
|
| 58 |
+
### Response:
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
or
|
| 62 |
+
|
| 63 |
+
```
|
| 64 |
+
### Instruction:
|
| 65 |
+
<prompt>
|
| 66 |
+
|
| 67 |
+
### Response:
|
| 68 |
+
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
This model for me produced coherent outputs with the following sampler settings, but feel free to experiment:
|
| 72 |
+
```
|
| 73 |
+
max_new_tokens=128, do_sample=True, use_cache=True, temperature=0.2, top_p=0.9, eos_token_id= self.tokenizer.eos_token_id
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
In the tokenizer decode arguments, it also needs these settings:
|
| 77 |
+
```
|
| 78 |
+
skip_special_tokens=True, clean_up_tokenization_space=False
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
The following parameters were used with HuggingFace trainer to train the model with:
|
| 82 |
+
```
|
| 83 |
+
--model_name_or_path replit/replit-code-v1-3b --data_path /root/stanford_alpaca/train.json --bf16 True --output_dir /root/stanford_alpaca/model_ckpts --num_train_epochs 3 --per_device_train_batch_size 4 --per_device_eval_batch_size 1 --gradient_accumulation_steps 8 --save_strategy steps --save_steps 200 --save_total_limit 3 --learning_rate 1e-5 --weight_decay 0. --warmup_ratio 0.03 --tf32 True --run_name Replit1
|
| 84 |
+
```
|