technicolor commited on
Commit
05bc480
·
verified ·
1 Parent(s): c6e2b59

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1683 -1681
README.md CHANGED
@@ -1,1681 +1,1683 @@
1
- ---
2
- tags:
3
- - mteb
4
- model-index:
5
- - name: .\results\technicolor\Angle_BERT
6
- results:
7
- - task:
8
- type: Classification
9
- dataset:
10
- type: mteb/amazon_counterfactual
11
- name: MTEB AmazonCounterfactualClassification (en)
12
- config: en
13
- split: test
14
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
- metrics:
16
- - type: accuracy
17
- value: 77.94029850746269
18
- - type: ap
19
- value: 41.462497073772475
20
- - type: f1
21
- value: 71.91276160766711
22
- - task:
23
- type: Classification
24
- dataset:
25
- type: mteb/amazon_polarity
26
- name: MTEB AmazonPolarityClassification
27
- config: default
28
- split: test
29
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
- metrics:
31
- - type: accuracy
32
- value: 75.998675
33
- - type: ap
34
- value: 70.68601139811975
35
- - type: f1
36
- value: 75.80419607148225
37
- - task:
38
- type: Classification
39
- dataset:
40
- type: mteb/amazon_reviews_multi
41
- name: MTEB AmazonReviewsClassification (en)
42
- config: en
43
- split: test
44
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
- metrics:
46
- - type: accuracy
47
- value: 37.184000000000005
48
- - type: f1
49
- value: 36.927927910871034
50
- - task:
51
- type: Retrieval
52
- dataset:
53
- type: mteb/arguana
54
- name: MTEB ArguAna
55
- config: default
56
- split: test
57
- revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
58
- metrics:
59
- - type: map_at_1
60
- value: 18.208
61
- - type: map_at_10
62
- value: 31.217
63
- - type: map_at_100
64
- value: 32.504
65
- - type: map_at_1000
66
- value: 32.543
67
- - type: map_at_20
68
- value: 32.048
69
- - type: map_at_3
70
- value: 26.790000000000003
71
- - type: map_at_5
72
- value: 29.176000000000002
73
- - type: mrr_at_1
74
- value: 18.990000000000002
75
- - type: mrr_at_10
76
- value: 31.539
77
- - type: mrr_at_100
78
- value: 32.818999999999996
79
- - type: mrr_at_1000
80
- value: 32.857
81
- - type: mrr_at_20
82
- value: 32.363
83
- - type: mrr_at_3
84
- value: 27.003
85
- - type: mrr_at_5
86
- value: 29.518
87
- - type: ndcg_at_1
88
- value: 18.208
89
- - type: ndcg_at_10
90
- value: 38.881
91
- - type: ndcg_at_100
92
- value: 44.931
93
- - type: ndcg_at_1000
94
- value: 45.864
95
- - type: ndcg_at_20
96
- value: 41.823
97
- - type: ndcg_at_3
98
- value: 29.675
99
- - type: ndcg_at_5
100
- value: 33.964
101
- - type: precision_at_1
102
- value: 18.208
103
- - type: precision_at_10
104
- value: 6.358
105
- - type: precision_at_100
106
- value: 0.914
107
- - type: precision_at_1000
108
- value: 0.099
109
- - type: precision_at_20
110
- value: 3.752
111
- - type: precision_at_3
112
- value: 12.684000000000001
113
- - type: precision_at_5
114
- value: 9.687
115
- - type: recall_at_1
116
- value: 18.208
117
- - type: recall_at_10
118
- value: 63.585
119
- - type: recall_at_100
120
- value: 91.39399999999999
121
- - type: recall_at_1000
122
- value: 98.506
123
- - type: recall_at_20
124
- value: 75.036
125
- - type: recall_at_3
126
- value: 38.051
127
- - type: recall_at_5
128
- value: 48.435
129
- - task:
130
- type: Clustering
131
- dataset:
132
- type: mteb/arxiv-clustering-p2p
133
- name: MTEB ArxivClusteringP2P
134
- config: default
135
- split: test
136
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
137
- metrics:
138
- - type: v_measure
139
- value: 35.32543411547368
140
- - task:
141
- type: Clustering
142
- dataset:
143
- type: mteb/arxiv-clustering-s2s
144
- name: MTEB ArxivClusteringS2S
145
- config: default
146
- split: test
147
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
148
- metrics:
149
- - type: v_measure
150
- value: 27.664108097727595
151
- - task:
152
- type: Reranking
153
- dataset:
154
- type: mteb/askubuntudupquestions-reranking
155
- name: MTEB AskUbuntuDupQuestions
156
- config: default
157
- split: test
158
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
159
- metrics:
160
- - type: map
161
- value: 51.337125683605656
162
- - type: mrr
163
- value: 64.09422679505782
164
- - task:
165
- type: Classification
166
- dataset:
167
- type: mteb/banking77
168
- name: MTEB Banking77Classification
169
- config: default
170
- split: test
171
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
172
- metrics:
173
- - type: accuracy
174
- value: 75.49675324675324
175
- - type: f1
176
- value: 75.43051473772864
177
- - task:
178
- type: Clustering
179
- dataset:
180
- type: mteb/biorxiv-clustering-p2p
181
- name: MTEB BiorxivClusteringP2P
182
- config: default
183
- split: test
184
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
185
- metrics:
186
- - type: v_measure
187
- value: 30.952117397946154
188
- - task:
189
- type: Clustering
190
- dataset:
191
- type: mteb/biorxiv-clustering-s2s
192
- name: MTEB BiorxivClusteringS2S
193
- config: default
194
- split: test
195
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
196
- metrics:
197
- - type: v_measure
198
- value: 24.80565572031388
199
- - task:
200
- type: Retrieval
201
- dataset:
202
- type: mteb/cqadupstack-android
203
- name: MTEB CQADupstackAndroidRetrieval
204
- config: default
205
- split: test
206
- revision: f46a197baaae43b4f621051089b82a364682dfeb
207
- metrics:
208
- - type: map_at_1
209
- value: 18.148
210
- - type: map_at_10
211
- value: 23.986
212
- - type: map_at_100
213
- value: 25.028
214
- - type: map_at_1000
215
- value: 25.163999999999998
216
- - type: map_at_20
217
- value: 24.526
218
- - type: map_at_3
219
- value: 21.822
220
- - type: map_at_5
221
- value: 22.933
222
- - type: mrr_at_1
223
- value: 23.319000000000003
224
- - type: mrr_at_10
225
- value: 28.944
226
- - type: mrr_at_100
227
- value: 29.837999999999997
228
- - type: mrr_at_1000
229
- value: 29.914
230
- - type: mrr_at_20
231
- value: 29.441
232
- - type: mrr_at_3
233
- value: 26.943
234
- - type: mrr_at_5
235
- value: 27.944999999999997
236
- - type: ndcg_at_1
237
- value: 23.319000000000003
238
- - type: ndcg_at_10
239
- value: 28.249000000000002
240
- - type: ndcg_at_100
241
- value: 33.219
242
- - type: ndcg_at_1000
243
- value: 36.374
244
- - type: ndcg_at_20
245
- value: 29.933
246
- - type: ndcg_at_3
247
- value: 24.845
248
- - type: ndcg_at_5
249
- value: 26.14
250
- - type: precision_at_1
251
- value: 23.319000000000003
252
- - type: precision_at_10
253
- value: 5.351
254
- - type: precision_at_100
255
- value: 0.971
256
- - type: precision_at_1000
257
- value: 0.151
258
- - type: precision_at_20
259
- value: 3.2620000000000005
260
- - type: precision_at_3
261
- value: 11.922
262
- - type: precision_at_5
263
- value: 8.555
264
- - type: recall_at_1
265
- value: 18.148
266
- - type: recall_at_10
267
- value: 36.144999999999996
268
- - type: recall_at_100
269
- value: 58.204
270
- - type: recall_at_1000
271
- value: 79.828
272
- - type: recall_at_20
273
- value: 42.245
274
- - type: recall_at_3
275
- value: 25.701
276
- - type: recall_at_5
277
- value: 29.636000000000003
278
- - task:
279
- type: Retrieval
280
- dataset:
281
- type: mteb/cqadupstack-english
282
- name: MTEB CQADupstackEnglishRetrieval
283
- config: default
284
- split: test
285
- revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
286
- metrics:
287
- - type: map_at_1
288
- value: 14.248
289
- - type: map_at_10
290
- value: 19.534000000000002
291
- - type: map_at_100
292
- value: 20.358
293
- - type: map_at_1000
294
- value: 20.464
295
- - type: map_at_20
296
- value: 19.965
297
- - type: map_at_3
298
- value: 17.881
299
- - type: map_at_5
300
- value: 18.773999999999997
301
- - type: mrr_at_1
302
- value: 18.025
303
- - type: mrr_at_10
304
- value: 23.265
305
- - type: mrr_at_100
306
- value: 24.054000000000002
307
- - type: mrr_at_1000
308
- value: 24.122
309
- - type: mrr_at_20
310
- value: 23.702
311
- - type: mrr_at_3
312
- value: 21.624
313
- - type: mrr_at_5
314
- value: 22.5
315
- - type: ndcg_at_1
316
- value: 18.025
317
- - type: ndcg_at_10
318
- value: 23.0
319
- - type: ndcg_at_100
320
- value: 27.016000000000002
321
- - type: ndcg_at_1000
322
- value: 29.751
323
- - type: ndcg_at_20
324
- value: 24.415
325
- - type: ndcg_at_3
326
- value: 20.222
327
- - type: ndcg_at_5
328
- value: 21.379
329
- - type: precision_at_1
330
- value: 18.025
331
- - type: precision_at_10
332
- value: 4.35
333
- - type: precision_at_100
334
- value: 0.796
335
- - type: precision_at_1000
336
- value: 0.127
337
- - type: precision_at_20
338
- value: 2.662
339
- - type: precision_at_3
340
- value: 9.809
341
- - type: precision_at_5
342
- value: 6.955
343
- - type: recall_at_1
344
- value: 14.248
345
- - type: recall_at_10
346
- value: 29.646
347
- - type: recall_at_100
348
- value: 47.527
349
- - type: recall_at_1000
350
- value: 66.468
351
- - type: recall_at_20
352
- value: 34.873
353
- - type: recall_at_3
354
- value: 21.366
355
- - type: recall_at_5
356
- value: 24.738
357
- - task:
358
- type: Retrieval
359
- dataset:
360
- type: mteb/cqadupstack-gaming
361
- name: MTEB CQADupstackGamingRetrieval
362
- config: default
363
- split: test
364
- revision: 4885aa143210c98657558c04aaf3dc47cfb54340
365
- metrics:
366
- - type: map_at_1
367
- value: 19.834
368
- - type: map_at_10
369
- value: 27.569
370
- - type: map_at_100
371
- value: 28.601
372
- - type: map_at_1000
373
- value: 28.705000000000002
374
- - type: map_at_20
375
- value: 28.194000000000003
376
- - type: map_at_3
377
- value: 25.352999999999998
378
- - type: map_at_5
379
- value: 26.512
380
- - type: mrr_at_1
381
- value: 23.26
382
- - type: mrr_at_10
383
- value: 30.406
384
- - type: mrr_at_100
385
- value: 31.291000000000004
386
- - type: mrr_at_1000
387
- value: 31.371
388
- - type: mrr_at_20
389
- value: 30.941000000000003
390
- - type: mrr_at_3
391
- value: 28.485
392
- - type: mrr_at_5
393
- value: 29.444
394
- - type: ndcg_at_1
395
- value: 23.26
396
- - type: ndcg_at_10
397
- value: 31.959
398
- - type: ndcg_at_100
399
- value: 36.747
400
- - type: ndcg_at_1000
401
- value: 39.47
402
- - type: ndcg_at_20
403
- value: 33.992
404
- - type: ndcg_at_3
405
- value: 27.839999999999996
406
- - type: ndcg_at_5
407
- value: 29.593999999999998
408
- - type: precision_at_1
409
- value: 23.26
410
- - type: precision_at_10
411
- value: 5.436
412
- - type: precision_at_100
413
- value: 0.8500000000000001
414
- - type: precision_at_1000
415
- value: 0.116
416
- - type: precision_at_20
417
- value: 3.235
418
- - type: precision_at_3
419
- value: 12.684999999999999
420
- - type: precision_at_5
421
- value: 8.853
422
- - type: recall_at_1
423
- value: 19.834
424
- - type: recall_at_10
425
- value: 42.531
426
- - type: recall_at_100
427
- value: 63.963
428
- - type: recall_at_1000
429
- value: 84.174
430
- - type: recall_at_20
431
- value: 50.101
432
- - type: recall_at_3
433
- value: 31.179000000000002
434
- - type: recall_at_5
435
- value: 35.567
436
- - task:
437
- type: Retrieval
438
- dataset:
439
- type: mteb/cqadupstack-gis
440
- name: MTEB CQADupstackGisRetrieval
441
- config: default
442
- split: test
443
- revision: 5003b3064772da1887988e05400cf3806fe491f2
444
- metrics:
445
- - type: map_at_1
446
- value: 9.263
447
- - type: map_at_10
448
- value: 12.104
449
- - type: map_at_100
450
- value: 12.736
451
- - type: map_at_1000
452
- value: 12.836
453
- - type: map_at_20
454
- value: 12.415
455
- - type: map_at_3
456
- value: 10.891
457
- - type: map_at_5
458
- value: 11.443
459
- - type: mrr_at_1
460
- value: 9.831
461
- - type: mrr_at_10
462
- value: 12.856000000000002
463
- - type: mrr_at_100
464
- value: 13.492
465
- - type: mrr_at_1000
466
- value: 13.587
467
- - type: mrr_at_20
468
- value: 13.178
469
- - type: mrr_at_3
470
- value: 11.62
471
- - type: mrr_at_5
472
- value: 12.218
473
- - type: ndcg_at_1
474
- value: 9.831
475
- - type: ndcg_at_10
476
- value: 14.224
477
- - type: ndcg_at_100
478
- value: 17.78
479
- - type: ndcg_at_1000
480
- value: 21.078
481
- - type: ndcg_at_20
482
- value: 15.329999999999998
483
- - type: ndcg_at_3
484
- value: 11.691
485
- - type: ndcg_at_5
486
- value: 12.692
487
- - type: precision_at_1
488
- value: 9.831
489
- - type: precision_at_10
490
- value: 2.26
491
- - type: precision_at_100
492
- value: 0.43299999999999994
493
- - type: precision_at_1000
494
- value: 0.077
495
- - type: precision_at_20
496
- value: 1.384
497
- - type: precision_at_3
498
- value: 4.7829999999999995
499
- - type: precision_at_5
500
- value: 3.458
501
- - type: recall_at_1
502
- value: 9.263
503
- - type: recall_at_10
504
- value: 20.293
505
- - type: recall_at_100
506
- value: 37.507000000000005
507
- - type: recall_at_1000
508
- value: 63.727000000000004
509
- - type: recall_at_20
510
- value: 24.424
511
- - type: recall_at_3
512
- value: 13.215
513
- - type: recall_at_5
514
- value: 15.661
515
- - task:
516
- type: Retrieval
517
- dataset:
518
- type: mteb/cqadupstack-mathematica
519
- name: MTEB CQADupstackMathematicaRetrieval
520
- config: default
521
- split: test
522
- revision: 90fceea13679c63fe563ded68f3b6f06e50061de
523
- metrics:
524
- - type: map_at_1
525
- value: 3.936
526
- - type: map_at_10
527
- value: 5.976
528
- - type: map_at_100
529
- value: 6.619999999999999
530
- - type: map_at_1000
531
- value: 6.737
532
- - type: map_at_20
533
- value: 6.271
534
- - type: map_at_3
535
- value: 5.179
536
- - type: map_at_5
537
- value: 5.5
538
- - type: mrr_at_1
539
- value: 5.348
540
- - type: mrr_at_10
541
- value: 7.954
542
- - type: mrr_at_100
543
- value: 8.683
544
- - type: mrr_at_1000
545
- value: 8.782
546
- - type: mrr_at_20
547
- value: 8.336
548
- - type: mrr_at_3
549
- value: 7.027
550
- - type: mrr_at_5
551
- value: 7.449999999999999
552
- - type: ndcg_at_1
553
- value: 5.348
554
- - type: ndcg_at_10
555
- value: 7.832999999999999
556
- - type: ndcg_at_100
557
- value: 11.567
558
- - type: ndcg_at_1000
559
- value: 15.213
560
- - type: ndcg_at_20
561
- value: 8.996
562
- - type: ndcg_at_3
563
- value: 6.164
564
- - type: ndcg_at_5
565
- value: 6.726
566
- - type: precision_at_1
567
- value: 5.348
568
- - type: precision_at_10
569
- value: 1.617
570
- - type: precision_at_100
571
- value: 0.42300000000000004
572
- - type: precision_at_1000
573
- value: 0.08800000000000001
574
- - type: precision_at_20
575
- value: 1.126
576
- - type: precision_at_3
577
- value: 3.1919999999999997
578
- - type: precision_at_5
579
- value: 2.363
580
- - type: recall_at_1
581
- value: 3.936
582
- - type: recall_at_10
583
- value: 11.711
584
- - type: recall_at_100
585
- value: 28.875
586
- - type: recall_at_1000
587
- value: 56.267
588
- - type: recall_at_20
589
- value: 15.989999999999998
590
- - type: recall_at_3
591
- value: 7.087000000000001
592
- - type: recall_at_5
593
- value: 8.436
594
- - task:
595
- type: Retrieval
596
- dataset:
597
- type: mteb/cqadupstack-physics
598
- name: MTEB CQADupstackPhysicsRetrieval
599
- config: default
600
- split: test
601
- revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
602
- metrics:
603
- - type: map_at_1
604
- value: 13.367999999999999
605
- - type: map_at_10
606
- value: 19.301
607
- - type: map_at_100
608
- value: 20.374
609
- - type: map_at_1000
610
- value: 20.516000000000002
611
- - type: map_at_20
612
- value: 19.828000000000003
613
- - type: map_at_3
614
- value: 17.345
615
- - type: map_at_5
616
- value: 18.39
617
- - type: mrr_at_1
618
- value: 17.324
619
- - type: mrr_at_10
620
- value: 23.383000000000003
621
- - type: mrr_at_100
622
- value: 24.296
623
- - type: mrr_at_1000
624
- value: 24.375
625
- - type: mrr_at_20
626
- value: 23.866
627
- - type: mrr_at_3
628
- value: 21.238
629
- - type: mrr_at_5
630
- value: 22.336
631
- - type: ndcg_at_1
632
- value: 17.324
633
- - type: ndcg_at_10
634
- value: 23.345
635
- - type: ndcg_at_100
636
- value: 28.645
637
- - type: ndcg_at_1000
638
- value: 31.902
639
- - type: ndcg_at_20
640
- value: 25.113999999999997
641
- - type: ndcg_at_3
642
- value: 19.731
643
- - type: ndcg_at_5
644
- value: 21.271
645
- - type: precision_at_1
646
- value: 17.324
647
- - type: precision_at_10
648
- value: 4.495
649
- - type: precision_at_100
650
- value: 0.874
651
- - type: precision_at_1000
652
- value: 0.13799999999999998
653
- - type: precision_at_20
654
- value: 2.791
655
- - type: precision_at_3
656
- value: 9.464
657
- - type: precision_at_5
658
- value: 6.909999999999999
659
- - type: recall_at_1
660
- value: 13.367999999999999
661
- - type: recall_at_10
662
- value: 31.749
663
- - type: recall_at_100
664
- value: 55.078
665
- - type: recall_at_1000
666
- value: 77.88000000000001
667
- - type: recall_at_20
668
- value: 38.098
669
- - type: recall_at_3
670
- value: 21.356
671
- - type: recall_at_5
672
- value: 25.433
673
- - task:
674
- type: Retrieval
675
- dataset:
676
- type: mteb/cqadupstack-programmers
677
- name: MTEB CQADupstackProgrammersRetrieval
678
- config: default
679
- split: test
680
- revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
681
- metrics:
682
- - type: map_at_1
683
- value: 10.152
684
- - type: map_at_10
685
- value: 14.658999999999999
686
- - type: map_at_100
687
- value: 15.522
688
- - type: map_at_1000
689
- value: 15.653
690
- - type: map_at_20
691
- value: 15.087
692
- - type: map_at_3
693
- value: 13.099
694
- - type: map_at_5
695
- value: 13.941
696
- - type: mrr_at_1
697
- value: 13.128
698
- - type: mrr_at_10
699
- value: 18.035999999999998
700
- - type: mrr_at_100
701
- value: 18.911
702
- - type: mrr_at_1000
703
- value: 19.003999999999998
704
- - type: mrr_at_20
705
- value: 18.487000000000002
706
- - type: mrr_at_3
707
- value: 16.381
708
- - type: mrr_at_5
709
- value: 17.277
710
- - type: ndcg_at_1
711
- value: 13.128
712
- - type: ndcg_at_10
713
- value: 17.949
714
- - type: ndcg_at_100
715
- value: 22.579
716
- - type: ndcg_at_1000
717
- value: 26.064
718
- - type: ndcg_at_20
719
- value: 19.476
720
- - type: ndcg_at_3
721
- value: 14.975
722
- - type: ndcg_at_5
723
- value: 16.273
724
- - type: precision_at_1
725
- value: 13.128
726
- - type: precision_at_10
727
- value: 3.3329999999999997
728
- - type: precision_at_100
729
- value: 0.683
730
- - type: precision_at_1000
731
- value: 0.116
732
- - type: precision_at_20
733
- value: 2.129
734
- - type: precision_at_3
735
- value: 7.154000000000001
736
- - type: precision_at_5
737
- value: 5.251
738
- - type: recall_at_1
739
- value: 10.152
740
- - type: recall_at_10
741
- value: 24.933
742
- - type: recall_at_100
743
- value: 45.584
744
- - type: recall_at_1000
745
- value: 70.7
746
- - type: recall_at_20
747
- value: 30.361
748
- - type: recall_at_3
749
- value: 16.570999999999998
750
- - type: recall_at_5
751
- value: 19.901
752
- - task:
753
- type: Retrieval
754
- dataset:
755
- type: mteb/cqadupstack
756
- name: MTEB CQADupstackRetrieval
757
- config: default
758
- split: test
759
- revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
760
- metrics:
761
- - type: map_at_1
762
- value: 10.82375
763
- - type: map_at_10
764
- value: 15.058583333333331
765
- - type: map_at_100
766
- value: 15.841083333333335
767
- - type: map_at_1000
768
- value: 15.952749999999998
769
- - type: map_at_20
770
- value: 15.447583333333334
771
- - type: map_at_3
772
- value: 13.618000000000002
773
- - type: map_at_5
774
- value: 14.369499999999999
775
- - type: mrr_at_1
776
- value: 13.36475
777
- - type: mrr_at_10
778
- value: 17.77841666666667
779
- - type: mrr_at_100
780
- value: 18.528416666666665
781
- - type: mrr_at_1000
782
- value: 18.612583333333333
783
- - type: mrr_at_20
784
- value: 18.169416666666667
785
- - type: mrr_at_3
786
- value: 16.304166666666667
787
- - type: mrr_at_5
788
- value: 17.065166666666666
789
- - type: ndcg_at_1
790
- value: 13.36475
791
- - type: ndcg_at_10
792
- value: 18.002833333333335
793
- - type: ndcg_at_100
794
- value: 22.082583333333332
795
- - type: ndcg_at_1000
796
- value: 25.149166666666666
797
- - type: ndcg_at_20
798
- value: 19.33575
799
- - type: ndcg_at_3
800
- value: 15.334249999999999
801
- - type: ndcg_at_5
802
- value: 16.45558333333333
803
- - type: precision_at_1
804
- value: 13.36475
805
- - type: precision_at_10
806
- value: 3.2900000000000005
807
- - type: precision_at_100
808
- value: 0.6327499999999999
809
- - type: precision_at_1000
810
- value: 0.10600000000000001
811
- - type: precision_at_20
812
- value: 2.032666666666666
813
- - type: precision_at_3
814
- value: 7.209416666666667
815
- - type: precision_at_5
816
- value: 5.204416666666666
817
- - type: recall_at_1
818
- value: 10.82375
819
- - type: recall_at_10
820
- value: 24.346166666666665
821
- - type: recall_at_100
822
- value: 43.067916666666676
823
- - type: recall_at_1000
824
- value: 65.63275
825
- - type: recall_at_20
826
- value: 29.279916666666665
827
- - type: recall_at_3
828
- value: 16.74383333333333
829
- - type: recall_at_5
830
- value: 19.682583333333334
831
- - task:
832
- type: Retrieval
833
- dataset:
834
- type: mteb/cqadupstack-stats
835
- name: MTEB CQADupstackStatsRetrieval
836
- config: default
837
- split: test
838
- revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
839
- metrics:
840
- - type: map_at_1
841
- value: 8.212
842
- - type: map_at_10
843
- value: 11.457
844
- - type: map_at_100
845
- value: 12.033000000000001
846
- - type: map_at_1000
847
- value: 12.113999999999999
848
- - type: map_at_20
849
- value: 11.744
850
- - type: map_at_3
851
- value: 10.365
852
- - type: map_at_5
853
- value: 10.969
854
- - type: mrr_at_1
855
- value: 9.815999999999999
856
- - type: mrr_at_10
857
- value: 13.471
858
- - type: mrr_at_100
859
- value: 14.019
860
- - type: mrr_at_1000
861
- value: 14.097999999999999
862
- - type: mrr_at_20
863
- value: 13.745
864
- - type: mrr_at_3
865
- value: 12.449
866
- - type: mrr_at_5
867
- value: 12.97
868
- - type: ndcg_at_1
869
- value: 9.815999999999999
870
- - type: ndcg_at_10
871
- value: 13.724
872
- - type: ndcg_at_100
873
- value: 16.817
874
- - type: ndcg_at_1000
875
- value: 19.442
876
- - type: ndcg_at_20
877
- value: 14.725
878
- - type: ndcg_at_3
879
- value: 11.700000000000001
880
- - type: ndcg_at_5
881
- value: 12.598
882
- - type: precision_at_1
883
- value: 9.815999999999999
884
- - type: precision_at_10
885
- value: 2.393
886
- - type: precision_at_100
887
- value: 0.428
888
- - type: precision_at_1000
889
- value: 0.07100000000000001
890
- - type: precision_at_20
891
- value: 1.434
892
- - type: precision_at_3
893
- value: 5.624
894
- - type: precision_at_5
895
- value: 3.9570000000000003
896
- - type: recall_at_1
897
- value: 8.212
898
- - type: recall_at_10
899
- value: 18.87
900
- - type: recall_at_100
901
- value: 33.527
902
- - type: recall_at_1000
903
- value: 53.989
904
- - type: recall_at_20
905
- value: 22.631
906
- - type: recall_at_3
907
- value: 13.056000000000001
908
- - type: recall_at_5
909
- value: 15.425
910
- - task:
911
- type: Retrieval
912
- dataset:
913
- type: mteb/cqadupstack-tex
914
- name: MTEB CQADupstackTexRetrieval
915
- config: default
916
- split: test
917
- revision: 46989137a86843e03a6195de44b09deda022eec7
918
- metrics:
919
- - type: map_at_1
920
- value: 5.359
921
- - type: map_at_10
922
- value: 7.7170000000000005
923
- - type: map_at_100
924
- value: 8.222
925
- - type: map_at_1000
926
- value: 8.312999999999999
927
- - type: map_at_20
928
- value: 7.961
929
- - type: map_at_3
930
- value: 6.969
931
- - type: map_at_5
932
- value: 7.3870000000000005
933
- - type: mrr_at_1
934
- value: 6.9510000000000005
935
- - type: mrr_at_10
936
- value: 9.697
937
- - type: mrr_at_100
938
- value: 10.26
939
- - type: mrr_at_1000
940
- value: 10.337
941
- - type: mrr_at_20
942
- value: 9.989
943
- - type: mrr_at_3
944
- value: 8.792
945
- - type: mrr_at_5
946
- value: 9.307
947
- - type: ndcg_at_1
948
- value: 6.9510000000000005
949
- - type: ndcg_at_10
950
- value: 9.472999999999999
951
- - type: ndcg_at_100
952
- value: 12.414
953
- - type: ndcg_at_1000
954
- value: 15.122
955
- - type: ndcg_at_20
956
- value: 10.366999999999999
957
- - type: ndcg_at_3
958
- value: 8.071
959
- - type: ndcg_at_5
960
- value: 8.717
961
- - type: precision_at_1
962
- value: 6.9510000000000005
963
- - type: precision_at_10
964
- value: 1.7930000000000001
965
- - type: precision_at_100
966
- value: 0.40099999999999997
967
- - type: precision_at_1000
968
- value: 0.077
969
- - type: precision_at_20
970
- value: 1.158
971
- - type: precision_at_3
972
- value: 3.923
973
- - type: precision_at_5
974
- value: 2.8770000000000002
975
- - type: recall_at_1
976
- value: 5.359
977
- - type: recall_at_10
978
- value: 12.992999999999999
979
- - type: recall_at_100
980
- value: 26.854
981
- - type: recall_at_1000
982
- value: 46.888999999999996
983
- - type: recall_at_20
984
- value: 16.287
985
- - type: recall_at_3
986
- value: 8.919
987
- - type: recall_at_5
988
- value: 10.684000000000001
989
- - task:
990
- type: Retrieval
991
- dataset:
992
- type: mteb/cqadupstack-unix
993
- name: MTEB CQADupstackUnixRetrieval
994
- config: default
995
- split: test
996
- revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
997
- metrics:
998
- - type: map_at_1
999
- value: 9.667
1000
- - type: map_at_10
1001
- value: 12.515
1002
- - type: map_at_100
1003
- value: 13.200000000000001
1004
- - type: map_at_1000
1005
- value: 13.311
1006
- - type: map_at_20
1007
- value: 12.837000000000002
1008
- - type: map_at_3
1009
- value: 11.298
1010
- - type: map_at_5
1011
- value: 11.937000000000001
1012
- - type: mrr_at_1
1013
- value: 11.567
1014
- - type: mrr_at_10
1015
- value: 14.940999999999999
1016
- - type: mrr_at_100
1017
- value: 15.661
1018
- - type: mrr_at_1000
1019
- value: 15.751999999999999
1020
- - type: mrr_at_20
1021
- value: 15.283
1022
- - type: mrr_at_3
1023
- value: 13.511000000000001
1024
- - type: mrr_at_5
1025
- value: 14.308000000000002
1026
- - type: ndcg_at_1
1027
- value: 11.567
1028
- - type: ndcg_at_10
1029
- value: 14.869
1030
- - type: ndcg_at_100
1031
- value: 18.709999999999997
1032
- - type: ndcg_at_1000
1033
- value: 21.826999999999998
1034
- - type: ndcg_at_20
1035
- value: 16.067
1036
- - type: ndcg_at_3
1037
- value: 12.428
1038
- - type: ndcg_at_5
1039
- value: 13.542000000000002
1040
- - type: precision_at_1
1041
- value: 11.567
1042
- - type: precision_at_10
1043
- value: 2.64
1044
- - type: precision_at_100
1045
- value: 0.507
1046
- - type: precision_at_1000
1047
- value: 0.08800000000000001
1048
- - type: precision_at_20
1049
- value: 1.609
1050
- - type: precision_at_3
1051
- value: 5.628
1052
- - type: precision_at_5
1053
- value: 4.216
1054
- - type: recall_at_1
1055
- value: 9.667
1056
- - type: recall_at_10
1057
- value: 19.677
1058
- - type: recall_at_100
1059
- value: 37.668
1060
- - type: recall_at_1000
1061
- value: 60.687000000000005
1062
- - type: recall_at_20
1063
- value: 24.236
1064
- - type: recall_at_3
1065
- value: 13.173000000000002
1066
- - type: recall_at_5
1067
- value: 15.808
1068
- - task:
1069
- type: Retrieval
1070
- dataset:
1071
- type: mteb/cqadupstack-webmasters
1072
- name: MTEB CQADupstackWebmastersRetrieval
1073
- config: default
1074
- split: test
1075
- revision: 160c094312a0e1facb97e55eeddb698c0abe3571
1076
- metrics:
1077
- - type: map_at_1
1078
- value: 11.129999999999999
1079
- - type: map_at_10
1080
- value: 15.881
1081
- - type: map_at_100
1082
- value: 16.759
1083
- - type: map_at_1000
1084
- value: 16.903000000000002
1085
- - type: map_at_20
1086
- value: 16.284000000000002
1087
- - type: map_at_3
1088
- value: 14.23
1089
- - type: map_at_5
1090
- value: 15.035000000000002
1091
- - type: mrr_at_1
1092
- value: 14.229
1093
- - type: mrr_at_10
1094
- value: 19.028
1095
- - type: mrr_at_100
1096
- value: 19.811999999999998
1097
- - type: mrr_at_1000
1098
- value: 19.905
1099
- - type: mrr_at_20
1100
- value: 19.412
1101
- - type: mrr_at_3
1102
- value: 17.26
1103
- - type: mrr_at_5
1104
- value: 18.060000000000002
1105
- - type: ndcg_at_1
1106
- value: 14.229
1107
- - type: ndcg_at_10
1108
- value: 19.325
1109
- - type: ndcg_at_100
1110
- value: 23.817
1111
- - type: ndcg_at_1000
1112
- value: 27.407999999999998
1113
- - type: ndcg_at_20
1114
- value: 20.612
1115
- - type: ndcg_at_3
1116
- value: 16.248
1117
- - type: ndcg_at_5
1118
- value: 17.352
1119
- - type: precision_at_1
1120
- value: 14.229
1121
- - type: precision_at_10
1122
- value: 3.834
1123
- - type: precision_at_100
1124
- value: 0.822
1125
- - type: precision_at_1000
1126
- value: 0.158
1127
- - type: precision_at_20
1128
- value: 2.401
1129
- - type: precision_at_3
1130
- value: 7.707999999999999
1131
- - type: precision_at_5
1132
- value: 5.731
1133
- - type: recall_at_1
1134
- value: 11.129999999999999
1135
- - type: recall_at_10
1136
- value: 26.397
1137
- - type: recall_at_100
1138
- value: 47.616
1139
- - type: recall_at_1000
1140
- value: 73.15700000000001
1141
- - type: recall_at_20
1142
- value: 31.508999999999997
1143
- - type: recall_at_3
1144
- value: 17.368
1145
- - type: recall_at_5
1146
- value: 20.287
1147
- - task:
1148
- type: Retrieval
1149
- dataset:
1150
- type: mteb/cqadupstack-wordpress
1151
- name: MTEB CQADupstackWordpressRetrieval
1152
- config: default
1153
- split: test
1154
- revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1155
- metrics:
1156
- - type: map_at_1
1157
- value: 6.5680000000000005
1158
- - type: map_at_10
1159
- value: 10.004
1160
- - type: map_at_100
1161
- value: 10.639999999999999
1162
- - type: map_at_1000
1163
- value: 10.717
1164
- - type: map_at_20
1165
- value: 10.259
1166
- - type: map_at_3
1167
- value: 8.984
1168
- - type: map_at_5
1169
- value: 9.613
1170
- - type: mrr_at_1
1171
- value: 7.579
1172
- - type: mrr_at_10
1173
- value: 11.360000000000001
1174
- - type: mrr_at_100
1175
- value: 12.024
1176
- - type: mrr_at_1000
1177
- value: 12.104
1178
- - type: mrr_at_20
1179
- value: 11.652999999999999
1180
- - type: mrr_at_3
1181
- value: 10.32
1182
- - type: mrr_at_5
1183
- value: 10.967
1184
- - type: ndcg_at_1
1185
- value: 7.579
1186
- - type: ndcg_at_10
1187
- value: 12.084
1188
- - type: ndcg_at_100
1189
- value: 15.68
1190
- - type: ndcg_at_1000
1191
- value: 18.139
1192
- - type: ndcg_at_20
1193
- value: 13.001999999999999
1194
- - type: ndcg_at_3
1195
- value: 10.096
1196
- - type: ndcg_at_5
1197
- value: 11.183
1198
- - type: precision_at_1
1199
- value: 7.579
1200
- - type: precision_at_10
1201
- value: 1.978
1202
- - type: precision_at_100
1203
- value: 0.40499999999999997
1204
- - type: precision_at_1000
1205
- value: 0.065
1206
- - type: precision_at_20
1207
- value: 1.201
1208
- - type: precision_at_3
1209
- value: 4.621
1210
- - type: precision_at_5
1211
- value: 3.327
1212
- - type: recall_at_1
1213
- value: 6.5680000000000005
1214
- - type: recall_at_10
1215
- value: 17.209
1216
- - type: recall_at_100
1217
- value: 34.412
1218
- - type: recall_at_1000
1219
- value: 53.827000000000005
1220
- - type: recall_at_20
1221
- value: 20.604
1222
- - type: recall_at_3
1223
- value: 11.935
1224
- - type: recall_at_5
1225
- value: 14.615
1226
- - task:
1227
- type: Retrieval
1228
- dataset:
1229
- type: mteb/climate-fever
1230
- name: MTEB ClimateFEVER
1231
- config: default
1232
- split: test
1233
- revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1234
- metrics:
1235
- - type: map_at_1
1236
- value: 3.466
1237
- - type: map_at_10
1238
- value: 6.311
1239
- - type: map_at_100
1240
- value: 7.385
1241
- - type: map_at_1000
1242
- value: 7.596
1243
- - type: map_at_20
1244
- value: 6.844
1245
- - type: map_at_3
1246
- value: 5.115
1247
- - type: map_at_5
1248
- value: 5.636
1249
- - type: mrr_at_1
1250
- value: 7.818
1251
- - type: mrr_at_10
1252
- value: 13.528
1253
- - type: mrr_at_100
1254
- value: 14.814
1255
- - type: mrr_at_1000
1256
- value: 14.902999999999999
1257
- - type: mrr_at_20
1258
- value: 14.283999999999999
1259
- - type: mrr_at_3
1260
- value: 11.249
1261
- - type: mrr_at_5
1262
- value: 12.307
1263
- - type: ndcg_at_1
1264
- value: 7.818
1265
- - type: ndcg_at_10
1266
- value: 9.936
1267
- - type: ndcg_at_100
1268
- value: 15.748000000000001
1269
- - type: ndcg_at_1000
1270
- value: 20.355
1271
- - type: ndcg_at_20
1272
- value: 11.927
1273
- - type: ndcg_at_3
1274
- value: 7.340000000000001
1275
- - type: ndcg_at_5
1276
- value: 8.089
1277
- - type: precision_at_1
1278
- value: 7.818
1279
- - type: precision_at_10
1280
- value: 3.3550000000000004
1281
- - type: precision_at_100
1282
- value: 0.9610000000000001
1283
- - type: precision_at_1000
1284
- value: 0.178
1285
- - type: precision_at_20
1286
- value: 2.511
1287
- - type: precision_at_3
1288
- value: 5.494000000000001
1289
- - type: precision_at_5
1290
- value: 4.417
1291
- - type: recall_at_1
1292
- value: 3.466
1293
- - type: recall_at_10
1294
- value: 13.292000000000002
1295
- - type: recall_at_100
1296
- value: 34.287
1297
- - type: recall_at_1000
1298
- value: 61.207
1299
- - type: recall_at_20
1300
- value: 19.014
1301
- - type: recall_at_3
1302
- value: 7.066
1303
- - type: recall_at_5
1304
- value: 9.028
1305
- - task:
1306
- type: Classification
1307
- dataset:
1308
- type: mteb/emotion
1309
- name: MTEB EmotionClassification
1310
- config: default
1311
- split: test
1312
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1313
- metrics:
1314
- - type: accuracy
1315
- value: 45.21
1316
- - type: f1
1317
- value: 40.27450017657594
1318
- - task:
1319
- type: Classification
1320
- dataset:
1321
- type: mteb/imdb
1322
- name: MTEB ImdbClassification
1323
- config: default
1324
- split: test
1325
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1326
- metrics:
1327
- - type: accuracy
1328
- value: 68.848
1329
- - type: ap
1330
- value: 63.2883584195492
1331
- - type: f1
1332
- value: 68.6836564154069
1333
- - task:
1334
- type: Classification
1335
- dataset:
1336
- type: mteb/mtop_domain
1337
- name: MTEB MTOPDomainClassification (en)
1338
- config: en
1339
- split: test
1340
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1341
- metrics:
1342
- - type: accuracy
1343
- value: 85.37847697218423
1344
- - type: f1
1345
- value: 84.92640989123367
1346
- - task:
1347
- type: Classification
1348
- dataset:
1349
- type: mteb/mtop_intent
1350
- name: MTEB MTOPIntentClassification (en)
1351
- config: en
1352
- split: test
1353
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1354
- metrics:
1355
- - type: accuracy
1356
- value: 64.50524395804834
1357
- - type: f1
1358
- value: 48.40917698378292
1359
- - task:
1360
- type: Classification
1361
- dataset:
1362
- type: mteb/amazon_massive_intent
1363
- name: MTEB MassiveIntentClassification (en)
1364
- config: en
1365
- split: test
1366
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1367
- metrics:
1368
- - type: accuracy
1369
- value: 66.32145258910558
1370
- - type: f1
1371
- value: 64.84562142367274
1372
- - task:
1373
- type: Classification
1374
- dataset:
1375
- type: mteb/amazon_massive_scenario
1376
- name: MTEB MassiveScenarioClassification (en)
1377
- config: en
1378
- split: test
1379
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
1380
- metrics:
1381
- - type: accuracy
1382
- value: 70.6186953597848
1383
- - type: f1
1384
- value: 70.54134651579527
1385
- - task:
1386
- type: Clustering
1387
- dataset:
1388
- type: mteb/medrxiv-clustering-p2p
1389
- name: MTEB MedrxivClusteringP2P
1390
- config: default
1391
- split: test
1392
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1393
- metrics:
1394
- - type: v_measure
1395
- value: 27.349141993223746
1396
- - task:
1397
- type: Clustering
1398
- dataset:
1399
- type: mteb/medrxiv-clustering-s2s
1400
- name: MTEB MedrxivClusteringS2S
1401
- config: default
1402
- split: test
1403
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1404
- metrics:
1405
- - type: v_measure
1406
- value: 25.585510809207832
1407
- - task:
1408
- type: Clustering
1409
- dataset:
1410
- type: mteb/reddit-clustering
1411
- name: MTEB RedditClustering
1412
- config: default
1413
- split: test
1414
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1415
- metrics:
1416
- - type: v_measure
1417
- value: 40.32381150443673
1418
- - task:
1419
- type: Clustering
1420
- dataset:
1421
- type: mteb/reddit-clustering-p2p
1422
- name: MTEB RedditClusteringP2P
1423
- config: default
1424
- split: test
1425
- revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1426
- metrics:
1427
- - type: v_measure
1428
- value: 45.985786847845056
1429
- - task:
1430
- type: Reranking
1431
- dataset:
1432
- type: mteb/scidocs-reranking
1433
- name: MTEB SciDocsRR
1434
- config: default
1435
- split: test
1436
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
1437
- metrics:
1438
- - type: map
1439
- value: 70.58830468830689
1440
- - type: mrr
1441
- value: 89.4269474171435
1442
- - task:
1443
- type: PairClassification
1444
- dataset:
1445
- type: mteb/sprintduplicatequestions-pairclassification
1446
- name: MTEB SprintDuplicateQuestions
1447
- config: default
1448
- split: test
1449
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
1450
- metrics:
1451
- - type: cos_sim_accuracy
1452
- value: 99.56039603960396
1453
- - type: cos_sim_ap
1454
- value: 82.80827567304317
1455
- - type: cos_sim_f1
1456
- value: 76.10350076103501
1457
- - type: cos_sim_precision
1458
- value: 77.2399588053553
1459
- - type: cos_sim_recall
1460
- value: 75.0
1461
- - type: dot_accuracy
1462
- value: 99.31980198019802
1463
- - type: dot_ap
1464
- value: 63.62227490198173
1465
- - type: dot_f1
1466
- value: 60.08492569002123
1467
- - type: dot_precision
1468
- value: 64.02714932126696
1469
- - type: dot_recall
1470
- value: 56.599999999999994
1471
- - type: euclidean_accuracy
1472
- value: 99.58514851485148
1473
- - type: euclidean_ap
1474
- value: 84.43639703406805
1475
- - type: euclidean_f1
1476
- value: 77.52928647497338
1477
- - type: euclidean_precision
1478
- value: 82.91571753986332
1479
- - type: euclidean_recall
1480
- value: 72.8
1481
- - type: manhattan_accuracy
1482
- value: 99.58316831683169
1483
- - type: manhattan_ap
1484
- value: 84.30772142229371
1485
- - type: manhattan_f1
1486
- value: 77.64584408879712
1487
- - type: manhattan_precision
1488
- value: 80.25613660618997
1489
- - type: manhattan_recall
1490
- value: 75.2
1491
- - type: max_accuracy
1492
- value: 99.58514851485148
1493
- - type: max_ap
1494
- value: 84.43639703406805
1495
- - type: max_f1
1496
- value: 77.64584408879712
1497
- - task:
1498
- type: Clustering
1499
- dataset:
1500
- type: mteb/stackexchange-clustering
1501
- name: MTEB StackExchangeClustering
1502
- config: default
1503
- split: test
1504
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
1505
- metrics:
1506
- - type: v_measure
1507
- value: 48.256973284963735
1508
- - task:
1509
- type: Clustering
1510
- dataset:
1511
- type: mteb/stackexchange-clustering-p2p
1512
- name: MTEB StackExchangeClusteringP2P
1513
- config: default
1514
- split: test
1515
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
1516
- metrics:
1517
- - type: v_measure
1518
- value: 28.872051407552323
1519
- - task:
1520
- type: Reranking
1521
- dataset:
1522
- type: mteb/stackoverflowdupquestions-reranking
1523
- name: MTEB StackOverflowDupQuestions
1524
- config: default
1525
- split: test
1526
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
1527
- metrics:
1528
- - type: map
1529
- value: 40.992315303011075
1530
- - type: mrr
1531
- value: 41.398027013835836
1532
- - task:
1533
- type: Classification
1534
- dataset:
1535
- type: mteb/toxic_conversations_50k
1536
- name: MTEB ToxicConversationsClassification
1537
- config: default
1538
- split: test
1539
- revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
1540
- metrics:
1541
- - type: accuracy
1542
- value: 67.0849609375
1543
- - type: ap
1544
- value: 11.788791268631641
1545
- - type: f1
1546
- value: 50.9803202223727
1547
- - task:
1548
- type: Classification
1549
- dataset:
1550
- type: mteb/tweet_sentiment_extraction
1551
- name: MTEB TweetSentimentExtractionClassification
1552
- config: default
1553
- split: test
1554
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
1555
- metrics:
1556
- - type: accuracy
1557
- value: 57.57498585172609
1558
- - type: f1
1559
- value: 57.91311800407575
1560
- - task:
1561
- type: Clustering
1562
- dataset:
1563
- type: mteb/twentynewsgroups-clustering
1564
- name: MTEB TwentyNewsgroupsClustering
1565
- config: default
1566
- split: test
1567
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
1568
- metrics:
1569
- - type: v_measure
1570
- value: 33.06505289570024
1571
- - task:
1572
- type: PairClassification
1573
- dataset:
1574
- type: mteb/twittersemeval2015-pairclassification
1575
- name: MTEB TwitterSemEval2015
1576
- config: default
1577
- split: test
1578
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
1579
- metrics:
1580
- - type: cos_sim_accuracy
1581
- value: 83.71580139476664
1582
- - type: cos_sim_ap
1583
- value: 66.15526088864542
1584
- - type: cos_sim_f1
1585
- value: 62.3031151557578
1586
- - type: cos_sim_precision
1587
- value: 55.84605731018616
1588
- - type: cos_sim_recall
1589
- value: 70.44854881266491
1590
- - type: dot_accuracy
1591
- value: 81.99320498301246
1592
- - type: dot_ap
1593
- value: 59.10143958693731
1594
- - type: dot_f1
1595
- value: 59.58787878787878
1596
- - type: dot_precision
1597
- value: 55.11210762331839
1598
- - type: dot_recall
1599
- value: 64.85488126649076
1600
- - type: euclidean_accuracy
1601
- value: 83.59063002920665
1602
- - type: euclidean_ap
1603
- value: 65.63819065809086
1604
- - type: euclidean_f1
1605
- value: 61.41935483870967
1606
- - type: euclidean_precision
1607
- value: 55.29039070749736
1608
- - type: euclidean_recall
1609
- value: 69.07651715039577
1610
- - type: manhattan_accuracy
1611
- value: 83.6263932765095
1612
- - type: manhattan_ap
1613
- value: 65.69964834245273
1614
- - type: manhattan_f1
1615
- value: 61.52737752161382
1616
- - type: manhattan_precision
1617
- value: 56.45658880564125
1618
- - type: manhattan_recall
1619
- value: 67.59894459102902
1620
- - type: max_accuracy
1621
- value: 83.71580139476664
1622
- - type: max_ap
1623
- value: 66.15526088864542
1624
- - type: max_f1
1625
- value: 62.3031151557578
1626
- - task:
1627
- type: PairClassification
1628
- dataset:
1629
- type: mteb/twitterurlcorpus-pairclassification
1630
- name: MTEB TwitterURLCorpus
1631
- config: default
1632
- split: test
1633
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
1634
- metrics:
1635
- - type: cos_sim_accuracy
1636
- value: 87.99821477083091
1637
- - type: cos_sim_ap
1638
- value: 84.27684726247264
1639
- - type: cos_sim_f1
1640
- value: 76.53120888758953
1641
- - type: cos_sim_precision
1642
- value: 72.83667223149693
1643
- - type: cos_sim_recall
1644
- value: 80.62057283646443
1645
- - type: dot_accuracy
1646
- value: 87.04738619164047
1647
- - type: dot_ap
1648
- value: 80.98829705864014
1649
- - type: dot_f1
1650
- value: 74.43375169234146
1651
- - type: dot_precision
1652
- value: 70.9225298096367
1653
- - type: dot_recall
1654
- value: 78.31074838312288
1655
- - type: euclidean_accuracy
1656
- value: 87.69744246516863
1657
- - type: euclidean_ap
1658
- value: 83.50528467088635
1659
- - type: euclidean_f1
1660
- value: 75.65629784532656
1661
- - type: euclidean_precision
1662
- value: 73.45370168950764
1663
- - type: euclidean_recall
1664
- value: 77.99507237449954
1665
- - type: manhattan_accuracy
1666
- value: 87.6916210657042
1667
- - type: manhattan_ap
1668
- value: 83.49074793688219
1669
- - type: manhattan_f1
1670
- value: 75.60462282612708
1671
- - type: manhattan_precision
1672
- value: 72.63568641362184
1673
- - type: manhattan_recall
1674
- value: 78.8266091777025
1675
- - type: max_accuracy
1676
- value: 87.99821477083091
1677
- - type: max_ap
1678
- value: 84.27684726247264
1679
- - type: max_f1
1680
- value: 76.53120888758953
1681
- ---
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: .\results\technicolor\Angle_BERT
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 77.94029850746269
18
+ - type: ap
19
+ value: 41.462497073772475
20
+ - type: f1
21
+ value: 71.91276160766711
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 75.998675
33
+ - type: ap
34
+ value: 70.68601139811975
35
+ - type: f1
36
+ value: 75.80419607148225
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 37.184000000000005
48
+ - type: f1
49
+ value: 36.927927910871034
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: mteb/arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 18.208
61
+ - type: map_at_10
62
+ value: 31.217
63
+ - type: map_at_100
64
+ value: 32.504
65
+ - type: map_at_1000
66
+ value: 32.543
67
+ - type: map_at_20
68
+ value: 32.048
69
+ - type: map_at_3
70
+ value: 26.790000000000003
71
+ - type: map_at_5
72
+ value: 29.176000000000002
73
+ - type: mrr_at_1
74
+ value: 18.990000000000002
75
+ - type: mrr_at_10
76
+ value: 31.539
77
+ - type: mrr_at_100
78
+ value: 32.818999999999996
79
+ - type: mrr_at_1000
80
+ value: 32.857
81
+ - type: mrr_at_20
82
+ value: 32.363
83
+ - type: mrr_at_3
84
+ value: 27.003
85
+ - type: mrr_at_5
86
+ value: 29.518
87
+ - type: ndcg_at_1
88
+ value: 18.208
89
+ - type: ndcg_at_10
90
+ value: 38.881
91
+ - type: ndcg_at_100
92
+ value: 44.931
93
+ - type: ndcg_at_1000
94
+ value: 45.864
95
+ - type: ndcg_at_20
96
+ value: 41.823
97
+ - type: ndcg_at_3
98
+ value: 29.675
99
+ - type: ndcg_at_5
100
+ value: 33.964
101
+ - type: precision_at_1
102
+ value: 18.208
103
+ - type: precision_at_10
104
+ value: 6.358
105
+ - type: precision_at_100
106
+ value: 0.914
107
+ - type: precision_at_1000
108
+ value: 0.099
109
+ - type: precision_at_20
110
+ value: 3.752
111
+ - type: precision_at_3
112
+ value: 12.684000000000001
113
+ - type: precision_at_5
114
+ value: 9.687
115
+ - type: recall_at_1
116
+ value: 18.208
117
+ - type: recall_at_10
118
+ value: 63.585
119
+ - type: recall_at_100
120
+ value: 91.39399999999999
121
+ - type: recall_at_1000
122
+ value: 98.506
123
+ - type: recall_at_20
124
+ value: 75.036
125
+ - type: recall_at_3
126
+ value: 38.051
127
+ - type: recall_at_5
128
+ value: 48.435
129
+ - task:
130
+ type: Clustering
131
+ dataset:
132
+ type: mteb/arxiv-clustering-p2p
133
+ name: MTEB ArxivClusteringP2P
134
+ config: default
135
+ split: test
136
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
137
+ metrics:
138
+ - type: v_measure
139
+ value: 35.32543411547368
140
+ - task:
141
+ type: Clustering
142
+ dataset:
143
+ type: mteb/arxiv-clustering-s2s
144
+ name: MTEB ArxivClusteringS2S
145
+ config: default
146
+ split: test
147
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
148
+ metrics:
149
+ - type: v_measure
150
+ value: 27.664108097727595
151
+ - task:
152
+ type: Reranking
153
+ dataset:
154
+ type: mteb/askubuntudupquestions-reranking
155
+ name: MTEB AskUbuntuDupQuestions
156
+ config: default
157
+ split: test
158
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
159
+ metrics:
160
+ - type: map
161
+ value: 51.337125683605656
162
+ - type: mrr
163
+ value: 64.09422679505782
164
+ - task:
165
+ type: Classification
166
+ dataset:
167
+ type: mteb/banking77
168
+ name: MTEB Banking77Classification
169
+ config: default
170
+ split: test
171
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
172
+ metrics:
173
+ - type: accuracy
174
+ value: 75.49675324675324
175
+ - type: f1
176
+ value: 75.43051473772864
177
+ - task:
178
+ type: Clustering
179
+ dataset:
180
+ type: mteb/biorxiv-clustering-p2p
181
+ name: MTEB BiorxivClusteringP2P
182
+ config: default
183
+ split: test
184
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
185
+ metrics:
186
+ - type: v_measure
187
+ value: 30.952117397946154
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-s2s
192
+ name: MTEB BiorxivClusteringS2S
193
+ config: default
194
+ split: test
195
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
196
+ metrics:
197
+ - type: v_measure
198
+ value: 24.80565572031388
199
+ - task:
200
+ type: Retrieval
201
+ dataset:
202
+ type: mteb/cqadupstack-android
203
+ name: MTEB CQADupstackAndroidRetrieval
204
+ config: default
205
+ split: test
206
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
207
+ metrics:
208
+ - type: map_at_1
209
+ value: 18.148
210
+ - type: map_at_10
211
+ value: 23.986
212
+ - type: map_at_100
213
+ value: 25.028
214
+ - type: map_at_1000
215
+ value: 25.163999999999998
216
+ - type: map_at_20
217
+ value: 24.526
218
+ - type: map_at_3
219
+ value: 21.822
220
+ - type: map_at_5
221
+ value: 22.933
222
+ - type: mrr_at_1
223
+ value: 23.319000000000003
224
+ - type: mrr_at_10
225
+ value: 28.944
226
+ - type: mrr_at_100
227
+ value: 29.837999999999997
228
+ - type: mrr_at_1000
229
+ value: 29.914
230
+ - type: mrr_at_20
231
+ value: 29.441
232
+ - type: mrr_at_3
233
+ value: 26.943
234
+ - type: mrr_at_5
235
+ value: 27.944999999999997
236
+ - type: ndcg_at_1
237
+ value: 23.319000000000003
238
+ - type: ndcg_at_10
239
+ value: 28.249000000000002
240
+ - type: ndcg_at_100
241
+ value: 33.219
242
+ - type: ndcg_at_1000
243
+ value: 36.374
244
+ - type: ndcg_at_20
245
+ value: 29.933
246
+ - type: ndcg_at_3
247
+ value: 24.845
248
+ - type: ndcg_at_5
249
+ value: 26.14
250
+ - type: precision_at_1
251
+ value: 23.319000000000003
252
+ - type: precision_at_10
253
+ value: 5.351
254
+ - type: precision_at_100
255
+ value: 0.971
256
+ - type: precision_at_1000
257
+ value: 0.151
258
+ - type: precision_at_20
259
+ value: 3.2620000000000005
260
+ - type: precision_at_3
261
+ value: 11.922
262
+ - type: precision_at_5
263
+ value: 8.555
264
+ - type: recall_at_1
265
+ value: 18.148
266
+ - type: recall_at_10
267
+ value: 36.144999999999996
268
+ - type: recall_at_100
269
+ value: 58.204
270
+ - type: recall_at_1000
271
+ value: 79.828
272
+ - type: recall_at_20
273
+ value: 42.245
274
+ - type: recall_at_3
275
+ value: 25.701
276
+ - type: recall_at_5
277
+ value: 29.636000000000003
278
+ - task:
279
+ type: Retrieval
280
+ dataset:
281
+ type: mteb/cqadupstack-english
282
+ name: MTEB CQADupstackEnglishRetrieval
283
+ config: default
284
+ split: test
285
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
286
+ metrics:
287
+ - type: map_at_1
288
+ value: 14.248
289
+ - type: map_at_10
290
+ value: 19.534000000000002
291
+ - type: map_at_100
292
+ value: 20.358
293
+ - type: map_at_1000
294
+ value: 20.464
295
+ - type: map_at_20
296
+ value: 19.965
297
+ - type: map_at_3
298
+ value: 17.881
299
+ - type: map_at_5
300
+ value: 18.773999999999997
301
+ - type: mrr_at_1
302
+ value: 18.025
303
+ - type: mrr_at_10
304
+ value: 23.265
305
+ - type: mrr_at_100
306
+ value: 24.054000000000002
307
+ - type: mrr_at_1000
308
+ value: 24.122
309
+ - type: mrr_at_20
310
+ value: 23.702
311
+ - type: mrr_at_3
312
+ value: 21.624
313
+ - type: mrr_at_5
314
+ value: 22.5
315
+ - type: ndcg_at_1
316
+ value: 18.025
317
+ - type: ndcg_at_10
318
+ value: 23.0
319
+ - type: ndcg_at_100
320
+ value: 27.016000000000002
321
+ - type: ndcg_at_1000
322
+ value: 29.751
323
+ - type: ndcg_at_20
324
+ value: 24.415
325
+ - type: ndcg_at_3
326
+ value: 20.222
327
+ - type: ndcg_at_5
328
+ value: 21.379
329
+ - type: precision_at_1
330
+ value: 18.025
331
+ - type: precision_at_10
332
+ value: 4.35
333
+ - type: precision_at_100
334
+ value: 0.796
335
+ - type: precision_at_1000
336
+ value: 0.127
337
+ - type: precision_at_20
338
+ value: 2.662
339
+ - type: precision_at_3
340
+ value: 9.809
341
+ - type: precision_at_5
342
+ value: 6.955
343
+ - type: recall_at_1
344
+ value: 14.248
345
+ - type: recall_at_10
346
+ value: 29.646
347
+ - type: recall_at_100
348
+ value: 47.527
349
+ - type: recall_at_1000
350
+ value: 66.468
351
+ - type: recall_at_20
352
+ value: 34.873
353
+ - type: recall_at_3
354
+ value: 21.366
355
+ - type: recall_at_5
356
+ value: 24.738
357
+ - task:
358
+ type: Retrieval
359
+ dataset:
360
+ type: mteb/cqadupstack-gaming
361
+ name: MTEB CQADupstackGamingRetrieval
362
+ config: default
363
+ split: test
364
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
365
+ metrics:
366
+ - type: map_at_1
367
+ value: 19.834
368
+ - type: map_at_10
369
+ value: 27.569
370
+ - type: map_at_100
371
+ value: 28.601
372
+ - type: map_at_1000
373
+ value: 28.705000000000002
374
+ - type: map_at_20
375
+ value: 28.194000000000003
376
+ - type: map_at_3
377
+ value: 25.352999999999998
378
+ - type: map_at_5
379
+ value: 26.512
380
+ - type: mrr_at_1
381
+ value: 23.26
382
+ - type: mrr_at_10
383
+ value: 30.406
384
+ - type: mrr_at_100
385
+ value: 31.291000000000004
386
+ - type: mrr_at_1000
387
+ value: 31.371
388
+ - type: mrr_at_20
389
+ value: 30.941000000000003
390
+ - type: mrr_at_3
391
+ value: 28.485
392
+ - type: mrr_at_5
393
+ value: 29.444
394
+ - type: ndcg_at_1
395
+ value: 23.26
396
+ - type: ndcg_at_10
397
+ value: 31.959
398
+ - type: ndcg_at_100
399
+ value: 36.747
400
+ - type: ndcg_at_1000
401
+ value: 39.47
402
+ - type: ndcg_at_20
403
+ value: 33.992
404
+ - type: ndcg_at_3
405
+ value: 27.839999999999996
406
+ - type: ndcg_at_5
407
+ value: 29.593999999999998
408
+ - type: precision_at_1
409
+ value: 23.26
410
+ - type: precision_at_10
411
+ value: 5.436
412
+ - type: precision_at_100
413
+ value: 0.8500000000000001
414
+ - type: precision_at_1000
415
+ value: 0.116
416
+ - type: precision_at_20
417
+ value: 3.235
418
+ - type: precision_at_3
419
+ value: 12.684999999999999
420
+ - type: precision_at_5
421
+ value: 8.853
422
+ - type: recall_at_1
423
+ value: 19.834
424
+ - type: recall_at_10
425
+ value: 42.531
426
+ - type: recall_at_100
427
+ value: 63.963
428
+ - type: recall_at_1000
429
+ value: 84.174
430
+ - type: recall_at_20
431
+ value: 50.101
432
+ - type: recall_at_3
433
+ value: 31.179000000000002
434
+ - type: recall_at_5
435
+ value: 35.567
436
+ - task:
437
+ type: Retrieval
438
+ dataset:
439
+ type: mteb/cqadupstack-gis
440
+ name: MTEB CQADupstackGisRetrieval
441
+ config: default
442
+ split: test
443
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
444
+ metrics:
445
+ - type: map_at_1
446
+ value: 9.263
447
+ - type: map_at_10
448
+ value: 12.104
449
+ - type: map_at_100
450
+ value: 12.736
451
+ - type: map_at_1000
452
+ value: 12.836
453
+ - type: map_at_20
454
+ value: 12.415
455
+ - type: map_at_3
456
+ value: 10.891
457
+ - type: map_at_5
458
+ value: 11.443
459
+ - type: mrr_at_1
460
+ value: 9.831
461
+ - type: mrr_at_10
462
+ value: 12.856000000000002
463
+ - type: mrr_at_100
464
+ value: 13.492
465
+ - type: mrr_at_1000
466
+ value: 13.587
467
+ - type: mrr_at_20
468
+ value: 13.178
469
+ - type: mrr_at_3
470
+ value: 11.62
471
+ - type: mrr_at_5
472
+ value: 12.218
473
+ - type: ndcg_at_1
474
+ value: 9.831
475
+ - type: ndcg_at_10
476
+ value: 14.224
477
+ - type: ndcg_at_100
478
+ value: 17.78
479
+ - type: ndcg_at_1000
480
+ value: 21.078
481
+ - type: ndcg_at_20
482
+ value: 15.329999999999998
483
+ - type: ndcg_at_3
484
+ value: 11.691
485
+ - type: ndcg_at_5
486
+ value: 12.692
487
+ - type: precision_at_1
488
+ value: 9.831
489
+ - type: precision_at_10
490
+ value: 2.26
491
+ - type: precision_at_100
492
+ value: 0.43299999999999994
493
+ - type: precision_at_1000
494
+ value: 0.077
495
+ - type: precision_at_20
496
+ value: 1.384
497
+ - type: precision_at_3
498
+ value: 4.7829999999999995
499
+ - type: precision_at_5
500
+ value: 3.458
501
+ - type: recall_at_1
502
+ value: 9.263
503
+ - type: recall_at_10
504
+ value: 20.293
505
+ - type: recall_at_100
506
+ value: 37.507000000000005
507
+ - type: recall_at_1000
508
+ value: 63.727000000000004
509
+ - type: recall_at_20
510
+ value: 24.424
511
+ - type: recall_at_3
512
+ value: 13.215
513
+ - type: recall_at_5
514
+ value: 15.661
515
+ - task:
516
+ type: Retrieval
517
+ dataset:
518
+ type: mteb/cqadupstack-mathematica
519
+ name: MTEB CQADupstackMathematicaRetrieval
520
+ config: default
521
+ split: test
522
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
523
+ metrics:
524
+ - type: map_at_1
525
+ value: 3.936
526
+ - type: map_at_10
527
+ value: 5.976
528
+ - type: map_at_100
529
+ value: 6.619999999999999
530
+ - type: map_at_1000
531
+ value: 6.737
532
+ - type: map_at_20
533
+ value: 6.271
534
+ - type: map_at_3
535
+ value: 5.179
536
+ - type: map_at_5
537
+ value: 5.5
538
+ - type: mrr_at_1
539
+ value: 5.348
540
+ - type: mrr_at_10
541
+ value: 7.954
542
+ - type: mrr_at_100
543
+ value: 8.683
544
+ - type: mrr_at_1000
545
+ value: 8.782
546
+ - type: mrr_at_20
547
+ value: 8.336
548
+ - type: mrr_at_3
549
+ value: 7.027
550
+ - type: mrr_at_5
551
+ value: 7.449999999999999
552
+ - type: ndcg_at_1
553
+ value: 5.348
554
+ - type: ndcg_at_10
555
+ value: 7.832999999999999
556
+ - type: ndcg_at_100
557
+ value: 11.567
558
+ - type: ndcg_at_1000
559
+ value: 15.213
560
+ - type: ndcg_at_20
561
+ value: 8.996
562
+ - type: ndcg_at_3
563
+ value: 6.164
564
+ - type: ndcg_at_5
565
+ value: 6.726
566
+ - type: precision_at_1
567
+ value: 5.348
568
+ - type: precision_at_10
569
+ value: 1.617
570
+ - type: precision_at_100
571
+ value: 0.42300000000000004
572
+ - type: precision_at_1000
573
+ value: 0.08800000000000001
574
+ - type: precision_at_20
575
+ value: 1.126
576
+ - type: precision_at_3
577
+ value: 3.1919999999999997
578
+ - type: precision_at_5
579
+ value: 2.363
580
+ - type: recall_at_1
581
+ value: 3.936
582
+ - type: recall_at_10
583
+ value: 11.711
584
+ - type: recall_at_100
585
+ value: 28.875
586
+ - type: recall_at_1000
587
+ value: 56.267
588
+ - type: recall_at_20
589
+ value: 15.989999999999998
590
+ - type: recall_at_3
591
+ value: 7.087000000000001
592
+ - type: recall_at_5
593
+ value: 8.436
594
+ - task:
595
+ type: Retrieval
596
+ dataset:
597
+ type: mteb/cqadupstack-physics
598
+ name: MTEB CQADupstackPhysicsRetrieval
599
+ config: default
600
+ split: test
601
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
602
+ metrics:
603
+ - type: map_at_1
604
+ value: 13.367999999999999
605
+ - type: map_at_10
606
+ value: 19.301
607
+ - type: map_at_100
608
+ value: 20.374
609
+ - type: map_at_1000
610
+ value: 20.516000000000002
611
+ - type: map_at_20
612
+ value: 19.828000000000003
613
+ - type: map_at_3
614
+ value: 17.345
615
+ - type: map_at_5
616
+ value: 18.39
617
+ - type: mrr_at_1
618
+ value: 17.324
619
+ - type: mrr_at_10
620
+ value: 23.383000000000003
621
+ - type: mrr_at_100
622
+ value: 24.296
623
+ - type: mrr_at_1000
624
+ value: 24.375
625
+ - type: mrr_at_20
626
+ value: 23.866
627
+ - type: mrr_at_3
628
+ value: 21.238
629
+ - type: mrr_at_5
630
+ value: 22.336
631
+ - type: ndcg_at_1
632
+ value: 17.324
633
+ - type: ndcg_at_10
634
+ value: 23.345
635
+ - type: ndcg_at_100
636
+ value: 28.645
637
+ - type: ndcg_at_1000
638
+ value: 31.902
639
+ - type: ndcg_at_20
640
+ value: 25.113999999999997
641
+ - type: ndcg_at_3
642
+ value: 19.731
643
+ - type: ndcg_at_5
644
+ value: 21.271
645
+ - type: precision_at_1
646
+ value: 17.324
647
+ - type: precision_at_10
648
+ value: 4.495
649
+ - type: precision_at_100
650
+ value: 0.874
651
+ - type: precision_at_1000
652
+ value: 0.13799999999999998
653
+ - type: precision_at_20
654
+ value: 2.791
655
+ - type: precision_at_3
656
+ value: 9.464
657
+ - type: precision_at_5
658
+ value: 6.909999999999999
659
+ - type: recall_at_1
660
+ value: 13.367999999999999
661
+ - type: recall_at_10
662
+ value: 31.749
663
+ - type: recall_at_100
664
+ value: 55.078
665
+ - type: recall_at_1000
666
+ value: 77.88000000000001
667
+ - type: recall_at_20
668
+ value: 38.098
669
+ - type: recall_at_3
670
+ value: 21.356
671
+ - type: recall_at_5
672
+ value: 25.433
673
+ - task:
674
+ type: Retrieval
675
+ dataset:
676
+ type: mteb/cqadupstack-programmers
677
+ name: MTEB CQADupstackProgrammersRetrieval
678
+ config: default
679
+ split: test
680
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
681
+ metrics:
682
+ - type: map_at_1
683
+ value: 10.152
684
+ - type: map_at_10
685
+ value: 14.658999999999999
686
+ - type: map_at_100
687
+ value: 15.522
688
+ - type: map_at_1000
689
+ value: 15.653
690
+ - type: map_at_20
691
+ value: 15.087
692
+ - type: map_at_3
693
+ value: 13.099
694
+ - type: map_at_5
695
+ value: 13.941
696
+ - type: mrr_at_1
697
+ value: 13.128
698
+ - type: mrr_at_10
699
+ value: 18.035999999999998
700
+ - type: mrr_at_100
701
+ value: 18.911
702
+ - type: mrr_at_1000
703
+ value: 19.003999999999998
704
+ - type: mrr_at_20
705
+ value: 18.487000000000002
706
+ - type: mrr_at_3
707
+ value: 16.381
708
+ - type: mrr_at_5
709
+ value: 17.277
710
+ - type: ndcg_at_1
711
+ value: 13.128
712
+ - type: ndcg_at_10
713
+ value: 17.949
714
+ - type: ndcg_at_100
715
+ value: 22.579
716
+ - type: ndcg_at_1000
717
+ value: 26.064
718
+ - type: ndcg_at_20
719
+ value: 19.476
720
+ - type: ndcg_at_3
721
+ value: 14.975
722
+ - type: ndcg_at_5
723
+ value: 16.273
724
+ - type: precision_at_1
725
+ value: 13.128
726
+ - type: precision_at_10
727
+ value: 3.3329999999999997
728
+ - type: precision_at_100
729
+ value: 0.683
730
+ - type: precision_at_1000
731
+ value: 0.116
732
+ - type: precision_at_20
733
+ value: 2.129
734
+ - type: precision_at_3
735
+ value: 7.154000000000001
736
+ - type: precision_at_5
737
+ value: 5.251
738
+ - type: recall_at_1
739
+ value: 10.152
740
+ - type: recall_at_10
741
+ value: 24.933
742
+ - type: recall_at_100
743
+ value: 45.584
744
+ - type: recall_at_1000
745
+ value: 70.7
746
+ - type: recall_at_20
747
+ value: 30.361
748
+ - type: recall_at_3
749
+ value: 16.570999999999998
750
+ - type: recall_at_5
751
+ value: 19.901
752
+ - task:
753
+ type: Retrieval
754
+ dataset:
755
+ type: mteb/cqadupstack
756
+ name: MTEB CQADupstackRetrieval
757
+ config: default
758
+ split: test
759
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
760
+ metrics:
761
+ - type: map_at_1
762
+ value: 10.82375
763
+ - type: map_at_10
764
+ value: 15.058583333333331
765
+ - type: map_at_100
766
+ value: 15.841083333333335
767
+ - type: map_at_1000
768
+ value: 15.952749999999998
769
+ - type: map_at_20
770
+ value: 15.447583333333334
771
+ - type: map_at_3
772
+ value: 13.618000000000002
773
+ - type: map_at_5
774
+ value: 14.369499999999999
775
+ - type: mrr_at_1
776
+ value: 13.36475
777
+ - type: mrr_at_10
778
+ value: 17.77841666666667
779
+ - type: mrr_at_100
780
+ value: 18.528416666666665
781
+ - type: mrr_at_1000
782
+ value: 18.612583333333333
783
+ - type: mrr_at_20
784
+ value: 18.169416666666667
785
+ - type: mrr_at_3
786
+ value: 16.304166666666667
787
+ - type: mrr_at_5
788
+ value: 17.065166666666666
789
+ - type: ndcg_at_1
790
+ value: 13.36475
791
+ - type: ndcg_at_10
792
+ value: 18.002833333333335
793
+ - type: ndcg_at_100
794
+ value: 22.082583333333332
795
+ - type: ndcg_at_1000
796
+ value: 25.149166666666666
797
+ - type: ndcg_at_20
798
+ value: 19.33575
799
+ - type: ndcg_at_3
800
+ value: 15.334249999999999
801
+ - type: ndcg_at_5
802
+ value: 16.45558333333333
803
+ - type: precision_at_1
804
+ value: 13.36475
805
+ - type: precision_at_10
806
+ value: 3.2900000000000005
807
+ - type: precision_at_100
808
+ value: 0.6327499999999999
809
+ - type: precision_at_1000
810
+ value: 0.10600000000000001
811
+ - type: precision_at_20
812
+ value: 2.032666666666666
813
+ - type: precision_at_3
814
+ value: 7.209416666666667
815
+ - type: precision_at_5
816
+ value: 5.204416666666666
817
+ - type: recall_at_1
818
+ value: 10.82375
819
+ - type: recall_at_10
820
+ value: 24.346166666666665
821
+ - type: recall_at_100
822
+ value: 43.067916666666676
823
+ - type: recall_at_1000
824
+ value: 65.63275
825
+ - type: recall_at_20
826
+ value: 29.279916666666665
827
+ - type: recall_at_3
828
+ value: 16.74383333333333
829
+ - type: recall_at_5
830
+ value: 19.682583333333334
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: mteb/cqadupstack-stats
835
+ name: MTEB CQADupstackStatsRetrieval
836
+ config: default
837
+ split: test
838
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 8.212
842
+ - type: map_at_10
843
+ value: 11.457
844
+ - type: map_at_100
845
+ value: 12.033000000000001
846
+ - type: map_at_1000
847
+ value: 12.113999999999999
848
+ - type: map_at_20
849
+ value: 11.744
850
+ - type: map_at_3
851
+ value: 10.365
852
+ - type: map_at_5
853
+ value: 10.969
854
+ - type: mrr_at_1
855
+ value: 9.815999999999999
856
+ - type: mrr_at_10
857
+ value: 13.471
858
+ - type: mrr_at_100
859
+ value: 14.019
860
+ - type: mrr_at_1000
861
+ value: 14.097999999999999
862
+ - type: mrr_at_20
863
+ value: 13.745
864
+ - type: mrr_at_3
865
+ value: 12.449
866
+ - type: mrr_at_5
867
+ value: 12.97
868
+ - type: ndcg_at_1
869
+ value: 9.815999999999999
870
+ - type: ndcg_at_10
871
+ value: 13.724
872
+ - type: ndcg_at_100
873
+ value: 16.817
874
+ - type: ndcg_at_1000
875
+ value: 19.442
876
+ - type: ndcg_at_20
877
+ value: 14.725
878
+ - type: ndcg_at_3
879
+ value: 11.700000000000001
880
+ - type: ndcg_at_5
881
+ value: 12.598
882
+ - type: precision_at_1
883
+ value: 9.815999999999999
884
+ - type: precision_at_10
885
+ value: 2.393
886
+ - type: precision_at_100
887
+ value: 0.428
888
+ - type: precision_at_1000
889
+ value: 0.07100000000000001
890
+ - type: precision_at_20
891
+ value: 1.434
892
+ - type: precision_at_3
893
+ value: 5.624
894
+ - type: precision_at_5
895
+ value: 3.9570000000000003
896
+ - type: recall_at_1
897
+ value: 8.212
898
+ - type: recall_at_10
899
+ value: 18.87
900
+ - type: recall_at_100
901
+ value: 33.527
902
+ - type: recall_at_1000
903
+ value: 53.989
904
+ - type: recall_at_20
905
+ value: 22.631
906
+ - type: recall_at_3
907
+ value: 13.056000000000001
908
+ - type: recall_at_5
909
+ value: 15.425
910
+ - task:
911
+ type: Retrieval
912
+ dataset:
913
+ type: mteb/cqadupstack-tex
914
+ name: MTEB CQADupstackTexRetrieval
915
+ config: default
916
+ split: test
917
+ revision: 46989137a86843e03a6195de44b09deda022eec7
918
+ metrics:
919
+ - type: map_at_1
920
+ value: 5.359
921
+ - type: map_at_10
922
+ value: 7.7170000000000005
923
+ - type: map_at_100
924
+ value: 8.222
925
+ - type: map_at_1000
926
+ value: 8.312999999999999
927
+ - type: map_at_20
928
+ value: 7.961
929
+ - type: map_at_3
930
+ value: 6.969
931
+ - type: map_at_5
932
+ value: 7.3870000000000005
933
+ - type: mrr_at_1
934
+ value: 6.9510000000000005
935
+ - type: mrr_at_10
936
+ value: 9.697
937
+ - type: mrr_at_100
938
+ value: 10.26
939
+ - type: mrr_at_1000
940
+ value: 10.337
941
+ - type: mrr_at_20
942
+ value: 9.989
943
+ - type: mrr_at_3
944
+ value: 8.792
945
+ - type: mrr_at_5
946
+ value: 9.307
947
+ - type: ndcg_at_1
948
+ value: 6.9510000000000005
949
+ - type: ndcg_at_10
950
+ value: 9.472999999999999
951
+ - type: ndcg_at_100
952
+ value: 12.414
953
+ - type: ndcg_at_1000
954
+ value: 15.122
955
+ - type: ndcg_at_20
956
+ value: 10.366999999999999
957
+ - type: ndcg_at_3
958
+ value: 8.071
959
+ - type: ndcg_at_5
960
+ value: 8.717
961
+ - type: precision_at_1
962
+ value: 6.9510000000000005
963
+ - type: precision_at_10
964
+ value: 1.7930000000000001
965
+ - type: precision_at_100
966
+ value: 0.40099999999999997
967
+ - type: precision_at_1000
968
+ value: 0.077
969
+ - type: precision_at_20
970
+ value: 1.158
971
+ - type: precision_at_3
972
+ value: 3.923
973
+ - type: precision_at_5
974
+ value: 2.8770000000000002
975
+ - type: recall_at_1
976
+ value: 5.359
977
+ - type: recall_at_10
978
+ value: 12.992999999999999
979
+ - type: recall_at_100
980
+ value: 26.854
981
+ - type: recall_at_1000
982
+ value: 46.888999999999996
983
+ - type: recall_at_20
984
+ value: 16.287
985
+ - type: recall_at_3
986
+ value: 8.919
987
+ - type: recall_at_5
988
+ value: 10.684000000000001
989
+ - task:
990
+ type: Retrieval
991
+ dataset:
992
+ type: mteb/cqadupstack-unix
993
+ name: MTEB CQADupstackUnixRetrieval
994
+ config: default
995
+ split: test
996
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
997
+ metrics:
998
+ - type: map_at_1
999
+ value: 9.667
1000
+ - type: map_at_10
1001
+ value: 12.515
1002
+ - type: map_at_100
1003
+ value: 13.200000000000001
1004
+ - type: map_at_1000
1005
+ value: 13.311
1006
+ - type: map_at_20
1007
+ value: 12.837000000000002
1008
+ - type: map_at_3
1009
+ value: 11.298
1010
+ - type: map_at_5
1011
+ value: 11.937000000000001
1012
+ - type: mrr_at_1
1013
+ value: 11.567
1014
+ - type: mrr_at_10
1015
+ value: 14.940999999999999
1016
+ - type: mrr_at_100
1017
+ value: 15.661
1018
+ - type: mrr_at_1000
1019
+ value: 15.751999999999999
1020
+ - type: mrr_at_20
1021
+ value: 15.283
1022
+ - type: mrr_at_3
1023
+ value: 13.511000000000001
1024
+ - type: mrr_at_5
1025
+ value: 14.308000000000002
1026
+ - type: ndcg_at_1
1027
+ value: 11.567
1028
+ - type: ndcg_at_10
1029
+ value: 14.869
1030
+ - type: ndcg_at_100
1031
+ value: 18.709999999999997
1032
+ - type: ndcg_at_1000
1033
+ value: 21.826999999999998
1034
+ - type: ndcg_at_20
1035
+ value: 16.067
1036
+ - type: ndcg_at_3
1037
+ value: 12.428
1038
+ - type: ndcg_at_5
1039
+ value: 13.542000000000002
1040
+ - type: precision_at_1
1041
+ value: 11.567
1042
+ - type: precision_at_10
1043
+ value: 2.64
1044
+ - type: precision_at_100
1045
+ value: 0.507
1046
+ - type: precision_at_1000
1047
+ value: 0.08800000000000001
1048
+ - type: precision_at_20
1049
+ value: 1.609
1050
+ - type: precision_at_3
1051
+ value: 5.628
1052
+ - type: precision_at_5
1053
+ value: 4.216
1054
+ - type: recall_at_1
1055
+ value: 9.667
1056
+ - type: recall_at_10
1057
+ value: 19.677
1058
+ - type: recall_at_100
1059
+ value: 37.668
1060
+ - type: recall_at_1000
1061
+ value: 60.687000000000005
1062
+ - type: recall_at_20
1063
+ value: 24.236
1064
+ - type: recall_at_3
1065
+ value: 13.173000000000002
1066
+ - type: recall_at_5
1067
+ value: 15.808
1068
+ - task:
1069
+ type: Retrieval
1070
+ dataset:
1071
+ type: mteb/cqadupstack-webmasters
1072
+ name: MTEB CQADupstackWebmastersRetrieval
1073
+ config: default
1074
+ split: test
1075
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
1076
+ metrics:
1077
+ - type: map_at_1
1078
+ value: 11.129999999999999
1079
+ - type: map_at_10
1080
+ value: 15.881
1081
+ - type: map_at_100
1082
+ value: 16.759
1083
+ - type: map_at_1000
1084
+ value: 16.903000000000002
1085
+ - type: map_at_20
1086
+ value: 16.284000000000002
1087
+ - type: map_at_3
1088
+ value: 14.23
1089
+ - type: map_at_5
1090
+ value: 15.035000000000002
1091
+ - type: mrr_at_1
1092
+ value: 14.229
1093
+ - type: mrr_at_10
1094
+ value: 19.028
1095
+ - type: mrr_at_100
1096
+ value: 19.811999999999998
1097
+ - type: mrr_at_1000
1098
+ value: 19.905
1099
+ - type: mrr_at_20
1100
+ value: 19.412
1101
+ - type: mrr_at_3
1102
+ value: 17.26
1103
+ - type: mrr_at_5
1104
+ value: 18.060000000000002
1105
+ - type: ndcg_at_1
1106
+ value: 14.229
1107
+ - type: ndcg_at_10
1108
+ value: 19.325
1109
+ - type: ndcg_at_100
1110
+ value: 23.817
1111
+ - type: ndcg_at_1000
1112
+ value: 27.407999999999998
1113
+ - type: ndcg_at_20
1114
+ value: 20.612
1115
+ - type: ndcg_at_3
1116
+ value: 16.248
1117
+ - type: ndcg_at_5
1118
+ value: 17.352
1119
+ - type: precision_at_1
1120
+ value: 14.229
1121
+ - type: precision_at_10
1122
+ value: 3.834
1123
+ - type: precision_at_100
1124
+ value: 0.822
1125
+ - type: precision_at_1000
1126
+ value: 0.158
1127
+ - type: precision_at_20
1128
+ value: 2.401
1129
+ - type: precision_at_3
1130
+ value: 7.707999999999999
1131
+ - type: precision_at_5
1132
+ value: 5.731
1133
+ - type: recall_at_1
1134
+ value: 11.129999999999999
1135
+ - type: recall_at_10
1136
+ value: 26.397
1137
+ - type: recall_at_100
1138
+ value: 47.616
1139
+ - type: recall_at_1000
1140
+ value: 73.15700000000001
1141
+ - type: recall_at_20
1142
+ value: 31.508999999999997
1143
+ - type: recall_at_3
1144
+ value: 17.368
1145
+ - type: recall_at_5
1146
+ value: 20.287
1147
+ - task:
1148
+ type: Retrieval
1149
+ dataset:
1150
+ type: mteb/cqadupstack-wordpress
1151
+ name: MTEB CQADupstackWordpressRetrieval
1152
+ config: default
1153
+ split: test
1154
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1155
+ metrics:
1156
+ - type: map_at_1
1157
+ value: 6.5680000000000005
1158
+ - type: map_at_10
1159
+ value: 10.004
1160
+ - type: map_at_100
1161
+ value: 10.639999999999999
1162
+ - type: map_at_1000
1163
+ value: 10.717
1164
+ - type: map_at_20
1165
+ value: 10.259
1166
+ - type: map_at_3
1167
+ value: 8.984
1168
+ - type: map_at_5
1169
+ value: 9.613
1170
+ - type: mrr_at_1
1171
+ value: 7.579
1172
+ - type: mrr_at_10
1173
+ value: 11.360000000000001
1174
+ - type: mrr_at_100
1175
+ value: 12.024
1176
+ - type: mrr_at_1000
1177
+ value: 12.104
1178
+ - type: mrr_at_20
1179
+ value: 11.652999999999999
1180
+ - type: mrr_at_3
1181
+ value: 10.32
1182
+ - type: mrr_at_5
1183
+ value: 10.967
1184
+ - type: ndcg_at_1
1185
+ value: 7.579
1186
+ - type: ndcg_at_10
1187
+ value: 12.084
1188
+ - type: ndcg_at_100
1189
+ value: 15.68
1190
+ - type: ndcg_at_1000
1191
+ value: 18.139
1192
+ - type: ndcg_at_20
1193
+ value: 13.001999999999999
1194
+ - type: ndcg_at_3
1195
+ value: 10.096
1196
+ - type: ndcg_at_5
1197
+ value: 11.183
1198
+ - type: precision_at_1
1199
+ value: 7.579
1200
+ - type: precision_at_10
1201
+ value: 1.978
1202
+ - type: precision_at_100
1203
+ value: 0.40499999999999997
1204
+ - type: precision_at_1000
1205
+ value: 0.065
1206
+ - type: precision_at_20
1207
+ value: 1.201
1208
+ - type: precision_at_3
1209
+ value: 4.621
1210
+ - type: precision_at_5
1211
+ value: 3.327
1212
+ - type: recall_at_1
1213
+ value: 6.5680000000000005
1214
+ - type: recall_at_10
1215
+ value: 17.209
1216
+ - type: recall_at_100
1217
+ value: 34.412
1218
+ - type: recall_at_1000
1219
+ value: 53.827000000000005
1220
+ - type: recall_at_20
1221
+ value: 20.604
1222
+ - type: recall_at_3
1223
+ value: 11.935
1224
+ - type: recall_at_5
1225
+ value: 14.615
1226
+ - task:
1227
+ type: Retrieval
1228
+ dataset:
1229
+ type: mteb/climate-fever
1230
+ name: MTEB ClimateFEVER
1231
+ config: default
1232
+ split: test
1233
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1234
+ metrics:
1235
+ - type: map_at_1
1236
+ value: 3.466
1237
+ - type: map_at_10
1238
+ value: 6.311
1239
+ - type: map_at_100
1240
+ value: 7.385
1241
+ - type: map_at_1000
1242
+ value: 7.596
1243
+ - type: map_at_20
1244
+ value: 6.844
1245
+ - type: map_at_3
1246
+ value: 5.115
1247
+ - type: map_at_5
1248
+ value: 5.636
1249
+ - type: mrr_at_1
1250
+ value: 7.818
1251
+ - type: mrr_at_10
1252
+ value: 13.528
1253
+ - type: mrr_at_100
1254
+ value: 14.814
1255
+ - type: mrr_at_1000
1256
+ value: 14.902999999999999
1257
+ - type: mrr_at_20
1258
+ value: 14.283999999999999
1259
+ - type: mrr_at_3
1260
+ value: 11.249
1261
+ - type: mrr_at_5
1262
+ value: 12.307
1263
+ - type: ndcg_at_1
1264
+ value: 7.818
1265
+ - type: ndcg_at_10
1266
+ value: 9.936
1267
+ - type: ndcg_at_100
1268
+ value: 15.748000000000001
1269
+ - type: ndcg_at_1000
1270
+ value: 20.355
1271
+ - type: ndcg_at_20
1272
+ value: 11.927
1273
+ - type: ndcg_at_3
1274
+ value: 7.340000000000001
1275
+ - type: ndcg_at_5
1276
+ value: 8.089
1277
+ - type: precision_at_1
1278
+ value: 7.818
1279
+ - type: precision_at_10
1280
+ value: 3.3550000000000004
1281
+ - type: precision_at_100
1282
+ value: 0.9610000000000001
1283
+ - type: precision_at_1000
1284
+ value: 0.178
1285
+ - type: precision_at_20
1286
+ value: 2.511
1287
+ - type: precision_at_3
1288
+ value: 5.494000000000001
1289
+ - type: precision_at_5
1290
+ value: 4.417
1291
+ - type: recall_at_1
1292
+ value: 3.466
1293
+ - type: recall_at_10
1294
+ value: 13.292000000000002
1295
+ - type: recall_at_100
1296
+ value: 34.287
1297
+ - type: recall_at_1000
1298
+ value: 61.207
1299
+ - type: recall_at_20
1300
+ value: 19.014
1301
+ - type: recall_at_3
1302
+ value: 7.066
1303
+ - type: recall_at_5
1304
+ value: 9.028
1305
+ - task:
1306
+ type: Classification
1307
+ dataset:
1308
+ type: mteb/emotion
1309
+ name: MTEB EmotionClassification
1310
+ config: default
1311
+ split: test
1312
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1313
+ metrics:
1314
+ - type: accuracy
1315
+ value: 45.21
1316
+ - type: f1
1317
+ value: 40.27450017657594
1318
+ - task:
1319
+ type: Classification
1320
+ dataset:
1321
+ type: mteb/imdb
1322
+ name: MTEB ImdbClassification
1323
+ config: default
1324
+ split: test
1325
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1326
+ metrics:
1327
+ - type: accuracy
1328
+ value: 68.848
1329
+ - type: ap
1330
+ value: 63.2883584195492
1331
+ - type: f1
1332
+ value: 68.6836564154069
1333
+ - task:
1334
+ type: Classification
1335
+ dataset:
1336
+ type: mteb/mtop_domain
1337
+ name: MTEB MTOPDomainClassification (en)
1338
+ config: en
1339
+ split: test
1340
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1341
+ metrics:
1342
+ - type: accuracy
1343
+ value: 85.37847697218423
1344
+ - type: f1
1345
+ value: 84.92640989123367
1346
+ - task:
1347
+ type: Classification
1348
+ dataset:
1349
+ type: mteb/mtop_intent
1350
+ name: MTEB MTOPIntentClassification (en)
1351
+ config: en
1352
+ split: test
1353
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1354
+ metrics:
1355
+ - type: accuracy
1356
+ value: 64.50524395804834
1357
+ - type: f1
1358
+ value: 48.40917698378292
1359
+ - task:
1360
+ type: Classification
1361
+ dataset:
1362
+ type: mteb/amazon_massive_intent
1363
+ name: MTEB MassiveIntentClassification (en)
1364
+ config: en
1365
+ split: test
1366
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1367
+ metrics:
1368
+ - type: accuracy
1369
+ value: 66.32145258910558
1370
+ - type: f1
1371
+ value: 64.84562142367274
1372
+ - task:
1373
+ type: Classification
1374
+ dataset:
1375
+ type: mteb/amazon_massive_scenario
1376
+ name: MTEB MassiveScenarioClassification (en)
1377
+ config: en
1378
+ split: test
1379
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1380
+ metrics:
1381
+ - type: accuracy
1382
+ value: 70.6186953597848
1383
+ - type: f1
1384
+ value: 70.54134651579527
1385
+ - task:
1386
+ type: Clustering
1387
+ dataset:
1388
+ type: mteb/medrxiv-clustering-p2p
1389
+ name: MTEB MedrxivClusteringP2P
1390
+ config: default
1391
+ split: test
1392
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1393
+ metrics:
1394
+ - type: v_measure
1395
+ value: 27.349141993223746
1396
+ - task:
1397
+ type: Clustering
1398
+ dataset:
1399
+ type: mteb/medrxiv-clustering-s2s
1400
+ name: MTEB MedrxivClusteringS2S
1401
+ config: default
1402
+ split: test
1403
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1404
+ metrics:
1405
+ - type: v_measure
1406
+ value: 25.585510809207832
1407
+ - task:
1408
+ type: Clustering
1409
+ dataset:
1410
+ type: mteb/reddit-clustering
1411
+ name: MTEB RedditClustering
1412
+ config: default
1413
+ split: test
1414
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1415
+ metrics:
1416
+ - type: v_measure
1417
+ value: 40.32381150443673
1418
+ - task:
1419
+ type: Clustering
1420
+ dataset:
1421
+ type: mteb/reddit-clustering-p2p
1422
+ name: MTEB RedditClusteringP2P
1423
+ config: default
1424
+ split: test
1425
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1426
+ metrics:
1427
+ - type: v_measure
1428
+ value: 45.985786847845056
1429
+ - task:
1430
+ type: Reranking
1431
+ dataset:
1432
+ type: mteb/scidocs-reranking
1433
+ name: MTEB SciDocsRR
1434
+ config: default
1435
+ split: test
1436
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
1437
+ metrics:
1438
+ - type: map
1439
+ value: 70.58830468830689
1440
+ - type: mrr
1441
+ value: 89.4269474171435
1442
+ - task:
1443
+ type: PairClassification
1444
+ dataset:
1445
+ type: mteb/sprintduplicatequestions-pairclassification
1446
+ name: MTEB SprintDuplicateQuestions
1447
+ config: default
1448
+ split: test
1449
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
1450
+ metrics:
1451
+ - type: cos_sim_accuracy
1452
+ value: 99.56039603960396
1453
+ - type: cos_sim_ap
1454
+ value: 82.80827567304317
1455
+ - type: cos_sim_f1
1456
+ value: 76.10350076103501
1457
+ - type: cos_sim_precision
1458
+ value: 77.2399588053553
1459
+ - type: cos_sim_recall
1460
+ value: 75.0
1461
+ - type: dot_accuracy
1462
+ value: 99.31980198019802
1463
+ - type: dot_ap
1464
+ value: 63.62227490198173
1465
+ - type: dot_f1
1466
+ value: 60.08492569002123
1467
+ - type: dot_precision
1468
+ value: 64.02714932126696
1469
+ - type: dot_recall
1470
+ value: 56.599999999999994
1471
+ - type: euclidean_accuracy
1472
+ value: 99.58514851485148
1473
+ - type: euclidean_ap
1474
+ value: 84.43639703406805
1475
+ - type: euclidean_f1
1476
+ value: 77.52928647497338
1477
+ - type: euclidean_precision
1478
+ value: 82.91571753986332
1479
+ - type: euclidean_recall
1480
+ value: 72.8
1481
+ - type: manhattan_accuracy
1482
+ value: 99.58316831683169
1483
+ - type: manhattan_ap
1484
+ value: 84.30772142229371
1485
+ - type: manhattan_f1
1486
+ value: 77.64584408879712
1487
+ - type: manhattan_precision
1488
+ value: 80.25613660618997
1489
+ - type: manhattan_recall
1490
+ value: 75.2
1491
+ - type: max_accuracy
1492
+ value: 99.58514851485148
1493
+ - type: max_ap
1494
+ value: 84.43639703406805
1495
+ - type: max_f1
1496
+ value: 77.64584408879712
1497
+ - task:
1498
+ type: Clustering
1499
+ dataset:
1500
+ type: mteb/stackexchange-clustering
1501
+ name: MTEB StackExchangeClustering
1502
+ config: default
1503
+ split: test
1504
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
1505
+ metrics:
1506
+ - type: v_measure
1507
+ value: 48.256973284963735
1508
+ - task:
1509
+ type: Clustering
1510
+ dataset:
1511
+ type: mteb/stackexchange-clustering-p2p
1512
+ name: MTEB StackExchangeClusteringP2P
1513
+ config: default
1514
+ split: test
1515
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
1516
+ metrics:
1517
+ - type: v_measure
1518
+ value: 28.872051407552323
1519
+ - task:
1520
+ type: Reranking
1521
+ dataset:
1522
+ type: mteb/stackoverflowdupquestions-reranking
1523
+ name: MTEB StackOverflowDupQuestions
1524
+ config: default
1525
+ split: test
1526
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
1527
+ metrics:
1528
+ - type: map
1529
+ value: 40.992315303011075
1530
+ - type: mrr
1531
+ value: 41.398027013835836
1532
+ - task:
1533
+ type: Classification
1534
+ dataset:
1535
+ type: mteb/toxic_conversations_50k
1536
+ name: MTEB ToxicConversationsClassification
1537
+ config: default
1538
+ split: test
1539
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
1540
+ metrics:
1541
+ - type: accuracy
1542
+ value: 67.0849609375
1543
+ - type: ap
1544
+ value: 11.788791268631641
1545
+ - type: f1
1546
+ value: 50.9803202223727
1547
+ - task:
1548
+ type: Classification
1549
+ dataset:
1550
+ type: mteb/tweet_sentiment_extraction
1551
+ name: MTEB TweetSentimentExtractionClassification
1552
+ config: default
1553
+ split: test
1554
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
1555
+ metrics:
1556
+ - type: accuracy
1557
+ value: 57.57498585172609
1558
+ - type: f1
1559
+ value: 57.91311800407575
1560
+ - task:
1561
+ type: Clustering
1562
+ dataset:
1563
+ type: mteb/twentynewsgroups-clustering
1564
+ name: MTEB TwentyNewsgroupsClustering
1565
+ config: default
1566
+ split: test
1567
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
1568
+ metrics:
1569
+ - type: v_measure
1570
+ value: 33.06505289570024
1571
+ - task:
1572
+ type: PairClassification
1573
+ dataset:
1574
+ type: mteb/twittersemeval2015-pairclassification
1575
+ name: MTEB TwitterSemEval2015
1576
+ config: default
1577
+ split: test
1578
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
1579
+ metrics:
1580
+ - type: cos_sim_accuracy
1581
+ value: 83.71580139476664
1582
+ - type: cos_sim_ap
1583
+ value: 66.15526088864542
1584
+ - type: cos_sim_f1
1585
+ value: 62.3031151557578
1586
+ - type: cos_sim_precision
1587
+ value: 55.84605731018616
1588
+ - type: cos_sim_recall
1589
+ value: 70.44854881266491
1590
+ - type: dot_accuracy
1591
+ value: 81.99320498301246
1592
+ - type: dot_ap
1593
+ value: 59.10143958693731
1594
+ - type: dot_f1
1595
+ value: 59.58787878787878
1596
+ - type: dot_precision
1597
+ value: 55.11210762331839
1598
+ - type: dot_recall
1599
+ value: 64.85488126649076
1600
+ - type: euclidean_accuracy
1601
+ value: 83.59063002920665
1602
+ - type: euclidean_ap
1603
+ value: 65.63819065809086
1604
+ - type: euclidean_f1
1605
+ value: 61.41935483870967
1606
+ - type: euclidean_precision
1607
+ value: 55.29039070749736
1608
+ - type: euclidean_recall
1609
+ value: 69.07651715039577
1610
+ - type: manhattan_accuracy
1611
+ value: 83.6263932765095
1612
+ - type: manhattan_ap
1613
+ value: 65.69964834245273
1614
+ - type: manhattan_f1
1615
+ value: 61.52737752161382
1616
+ - type: manhattan_precision
1617
+ value: 56.45658880564125
1618
+ - type: manhattan_recall
1619
+ value: 67.59894459102902
1620
+ - type: max_accuracy
1621
+ value: 83.71580139476664
1622
+ - type: max_ap
1623
+ value: 66.15526088864542
1624
+ - type: max_f1
1625
+ value: 62.3031151557578
1626
+ - task:
1627
+ type: PairClassification
1628
+ dataset:
1629
+ type: mteb/twitterurlcorpus-pairclassification
1630
+ name: MTEB TwitterURLCorpus
1631
+ config: default
1632
+ split: test
1633
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
1634
+ metrics:
1635
+ - type: cos_sim_accuracy
1636
+ value: 87.99821477083091
1637
+ - type: cos_sim_ap
1638
+ value: 84.27684726247264
1639
+ - type: cos_sim_f1
1640
+ value: 76.53120888758953
1641
+ - type: cos_sim_precision
1642
+ value: 72.83667223149693
1643
+ - type: cos_sim_recall
1644
+ value: 80.62057283646443
1645
+ - type: dot_accuracy
1646
+ value: 87.04738619164047
1647
+ - type: dot_ap
1648
+ value: 80.98829705864014
1649
+ - type: dot_f1
1650
+ value: 74.43375169234146
1651
+ - type: dot_precision
1652
+ value: 70.9225298096367
1653
+ - type: dot_recall
1654
+ value: 78.31074838312288
1655
+ - type: euclidean_accuracy
1656
+ value: 87.69744246516863
1657
+ - type: euclidean_ap
1658
+ value: 83.50528467088635
1659
+ - type: euclidean_f1
1660
+ value: 75.65629784532656
1661
+ - type: euclidean_precision
1662
+ value: 73.45370168950764
1663
+ - type: euclidean_recall
1664
+ value: 77.99507237449954
1665
+ - type: manhattan_accuracy
1666
+ value: 87.6916210657042
1667
+ - type: manhattan_ap
1668
+ value: 83.49074793688219
1669
+ - type: manhattan_f1
1670
+ value: 75.60462282612708
1671
+ - type: manhattan_precision
1672
+ value: 72.63568641362184
1673
+ - type: manhattan_recall
1674
+ value: 78.8266091777025
1675
+ - type: max_accuracy
1676
+ value: 87.99821477083091
1677
+ - type: max_ap
1678
+ value: 84.27684726247264
1679
+ - type: max_f1
1680
+ value: 76.53120888758953
1681
+ ---
1682
+
1683
+ Embedding model trained on [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) with the [AnglE-optimized Text Embeddings](https://arxiv.org/abs/2309.12871)