Update README.md
Browse files
README.md
CHANGED
@@ -18,13 +18,27 @@ from tdc import tdc_hf_interface
|
|
18 |
from tdc.model_server.tokenizers.scgpt import scGPTTokenizer
|
19 |
import torch
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
scgpt = tdc_hf_interface("scGPT")
|
22 |
-
model = scgpt.load() #
|
23 |
tokenizer = scGPTTokenizer()
|
24 |
-
gene_ids = adata.var["feature_name"].to_numpy(
|
|
|
25 |
tokenized_data = tokenizer.tokenize_cell_vectors(
|
26 |
adata.X.toarray(), gene_ids)
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
```
|
29 |
|
30 |
# TDC Citation
|
|
|
18 |
from tdc.model_server.tokenizers.scgpt import scGPTTokenizer
|
19 |
import torch
|
20 |
|
21 |
+
# an example dataset
|
22 |
+
adata = DataLoader("cellxgene_sample_small",
|
23 |
+
"./data",
|
24 |
+
dataset_names=["cellxgene_sample_small"],
|
25 |
+
no_convert=True).adata
|
26 |
+
|
27 |
+
# code for loading the model and performing inference
|
28 |
scgpt = tdc_hf_interface("scGPT")
|
29 |
+
model = scgpt.load() # This line can cause segmentation fault on inappropriate setup
|
30 |
tokenizer = scGPTTokenizer()
|
31 |
+
gene_ids = adata.var["feature_name"].to_numpy(
|
32 |
+
) # Convert to numpy array
|
33 |
tokenized_data = tokenizer.tokenize_cell_vectors(
|
34 |
adata.X.toarray(), gene_ids)
|
35 |
+
mask = torch.tensor([x != 0 for x in tokenized_data[0][1]],
|
36 |
+
dtype=torch.bool)
|
37 |
+
|
38 |
+
# Extract first embedding
|
39 |
+
first_embed = model(tokenized_data[0][0],
|
40 |
+
tokenized_data[0][1],
|
41 |
+
attention_mask=mask)
|
42 |
```
|
43 |
|
44 |
# TDC Citation
|