--- library_name: peft base_model: oopsung/llama2-7b-koNqa-test-v1 tags: - axolotl - generated_from_trainer datasets: - 7897b36af6847987_train_data.json model-index: - name: test-llama2-7b-koNqa-test-v1 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: oopsung/llama2-7b-koNqa-test-v1 bf16: auto data_collator: max_length: 8192 padding: true type: dynamic_padding dataset_prepared_path: null datasets: - data_files: - 7897b36af6847987_train_data.json ds_type: json format: custom path: 7897b36af6847987_train_data.json preprocessing: - shuffle: true type: field: null field_input: null field_instruction: mood field_output: lyrics field_system: null format: null no_input_format: null system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: taopanda/test-llama2-7b-koNqa-test-v1 learning_rate: 0.0001980900647573094 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 600 micro_batch_size: 8 model_type: LlamaForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: ./outputs/lora-out/taopanda_test-llama2-7b-koNqa-test-v1 resume_from_checkpoint: null s2_attention: null save_safetensors: true save_steps: 0.15 save_total_limit: 1 seed: 26232 special_tokens: null strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: fatcat87-taopanda wandb_log_model: null wandb_mode: online wandb_name: taopanda_test-llama2-7b-koNqa-test-v1 wandb_project: subnet56-test wandb_runid: taopanda_test-llama2-7b-koNqa-test-v1 wandb_watch: null warmup_ratio: 0.06 weight_decay: 0.0 xformers_attention: null ```

# test-llama2-7b-koNqa-test-v1 This model is a fine-tuned version of [oopsung/llama2-7b-koNqa-test-v1](https://huggingface.co/oopsung/llama2-7b-koNqa-test-v1) on the 7897b36af6847987_train_data.json dataset. It achieves the following results on the evaluation set: - Loss: 1.5600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001980900647573094 - train_batch_size: 8 - eval_batch_size: 8 - seed: 26232 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12 - training_steps: 205 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0028 | 0.0098 | 1 | 2.0533 | | 1.7152 | 0.2543 | 26 | 1.6692 | | 1.5552 | 0.5086 | 52 | 1.6252 | | 1.648 | 0.7628 | 78 | 1.6017 | | 1.5565 | 1.0098 | 104 | 1.5852 | | 1.5165 | 1.2641 | 130 | 1.5732 | | 1.5192 | 1.5183 | 156 | 1.5643 | | 1.5389 | 1.7726 | 182 | 1.5600 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0