|
|
--- |
|
|
license: mit |
|
|
base_model: microsoft/deberta-v3-small |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- accuracy |
|
|
- f1 |
|
|
- precision |
|
|
- recall |
|
|
model-index: |
|
|
- name: my_awesome_model |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# my_awesome_model |
|
|
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 0.0808 |
|
|
- Accuracy: 0.8289 |
|
|
- F1: 0.8595 |
|
|
- Precision: 0.8864 |
|
|
- Recall: 0.8342 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 16 |
|
|
- eval_batch_size: 16 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 10 |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
|
| No log | 1.0 | 47 | 0.1056 | 0.7059 | 0.7788 | 0.8684 | 0.7059 | |
|
|
| No log | 2.0 | 94 | 0.0961 | 0.7219 | 0.7895 | 0.8710 | 0.7219 | |
|
|
| No log | 3.0 | 141 | 0.1042 | 0.7594 | 0.8045 | 0.8554 | 0.7594 | |
|
|
| No log | 4.0 | 188 | 0.0899 | 0.8021 | 0.8427 | 0.8876 | 0.8021 | |
|
|
| No log | 5.0 | 235 | 0.0911 | 0.8182 | 0.8540 | 0.8807 | 0.8289 | |
|
|
| No log | 6.0 | 282 | 0.0808 | 0.8289 | 0.8595 | 0.8864 | 0.8342 | |
|
|
| No log | 7.0 | 329 | 0.0885 | 0.8503 | 0.8689 | 0.8883 | 0.8503 | |
|
|
| No log | 8.0 | 376 | 0.0873 | 0.8396 | 0.8634 | 0.8827 | 0.8449 | |
|
|
| No log | 9.0 | 423 | 0.0926 | 0.8342 | 0.8579 | 0.8771 | 0.8396 | |
|
|
| No log | 10.0 | 470 | 0.0904 | 0.8342 | 0.8603 | 0.8820 | 0.8396 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.41.2 |
|
|
- Pytorch 2.3.0+cu121 |
|
|
- Datasets 2.19.2 |
|
|
- Tokenizers 0.19.1 |
|
|
|