tanbwilson
commited on
Commit
·
ba6f833
1
Parent(s):
a973538
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +36 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 270.14 +/- 22.06
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f374e74fdd0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f374e74fe60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f374e74fef0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f374e74ff80>", "_build": "<function ActorCriticPolicy._build at 0x7f374e756050>", "forward": "<function ActorCriticPolicy.forward at 0x7f374e7560e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f374e756170>", "_predict": "<function ActorCriticPolicy._predict at 0x7f374e756200>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f374e756290>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f374e756320>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f374e7563b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f374e7a92d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655237881.466594, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAADa6RPYVj8LnuI3s8lw5vPHkBejpPyxI8AACAPwAAgD/NHyw9KRxJuhb9lztpJpg24lkDOyYSsLoAAIA/AACAP8Ayqj2Pxna6WNIpOZYjgjRxMsI6WqZAuAAAgD8AAIA/bS01PrDA2T6KQ4y9fl6+vmVRgzyy2rK8AAAAAAAAAABGcTs+SDyivBgrQjwz/sO6ZskOvmKGmrsAAIA/AACAP03dpL2PXhu6Vj4+O+schLyqSJI7nWdgPQAAAAAAAAAATZQEPeEokrrZ0Rk7qtKsNr+NELk6QTK6AACAPwAAgD8mMsY9j8I4ukvCWDtAQPm39VEEO9tXAboAAIA/AACAP4BKbz2FQ/K5yxFluk+UhDYjulM7nmqHOQAAgD8AAIA/5l9XPlqVJz+S5L28AD2yvmbfFz46mv+9AAAAAAAAAADNEDm8SL+LuiUFkrt6SIE1lgdYO42u4LQAAIA/AACAPwDffr1c40O68rhUO3+3gzfbeYo7ywxXNgAAgD8AAIA/Gl70Pa4ftjmif7G6HBr3trDnz7otx9o5AACAPwAAgD+ADxg9jxp3uu7M6zuEaLK1HbeBO45NpLQAAIA/AACAP9o8lD32xEq6PjdXOwutqraPjk67zft5ugAAgD8AAIA/zR8SvY+WH7rSErs6IDfdNzVrjLltqlu5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICfoLPWIxYUCUhpRSlIwBbJRN6AOMAXSUR0B60XCrLhaUdX2UKGgGaAloD0MIkjzX92HrYUCUhpRSlGgVTegDaBZHQHrjxikO7QN1fZQoaAZoCWgPQwhyv0NRoP8zwJSGlFKUaBVLl2gWR0B65yZ1FH8TdX2UKGgGaAloD0MIT5FDxM3cYkCUhpRSlGgVTegDaBZHQHr0pS3solV1fZQoaAZoCWgPQwjWi6GcaN5cQJSGlFKUaBVN6ANoFkdAewNJYkmhNHV9lChoBmgJaA9DCCDQmbQpEWFAlIaUUpRoFU3oA2gWR0B7MGflIVdpdX2UKGgGaAloD0MIApoIG55e5D+UhpRSlGgVS69oFkdAezN4lhPTHHV9lChoBmgJaA9DCHmu78PBcWFAlIaUUpRoFU3oA2gWR0B7jTk/8l5XdX2UKGgGaAloD0MImGvRArRtXUCUhpRSlGgVTegDaBZHQHuPoMKCxu91fZQoaAZoCWgPQwhKtOTxNDxiQJSGlFKUaBVN6ANoFkdAe6MQ+EAYHnV9lChoBmgJaA9DCGahndMs7mBAlIaUUpRoFU3oA2gWR0B7tozFdcB2dX2UKGgGaAloD0MI9Bq7RPVyNECUhpRSlGgVS65oFkdAe7o/hl18s3V9lChoBmgJaA9DCKn7AKQ20l5AlIaUUpRoFU3oA2gWR0B70/uqm0mddX2UKGgGaAloD0MIxVkRNdEXaECUhpRSlGgVTXwCaBZHQHvd/029+PR1fZQoaAZoCWgPQwhKm6p7ZKBlQJSGlFKUaBVN6ANoFkdAe+FfDk2gnXV9lChoBmgJaA9DCL2qs1rgAGBAlIaUUpRoFU3oA2gWR0B75bjyWiUQdX2UKGgGaAloD0MIOkGbHD7ZKECUhpRSlGgVS8VoFkdAe+kf+jua4XV9lChoBmgJaA9DCPkvEATIP15AlIaUUpRoFU3oA2gWR0B76Smce8wpdX2UKGgGaAloD0MIYygn2lXTYECUhpRSlGgVTegDaBZHQHvytiYsunN1fZQoaAZoCWgPQwhIwVPIlVIhQJSGlFKUaBVLn2gWR0B8As23rleXdX2UKGgGaAloD0MI3nGKjmSkY0CUhpRSlGgVTegDaBZHQHwS655JK8N1fZQoaAZoCWgPQwiuKZDZWf9gQJSGlFKUaBVN6ANoFkdAfBzYzSCvo3V9lChoBmgJaA9DCB/zAYFOrmFAlIaUUpRoFU3oA2gWR0B8LOqgh8pkdX2UKGgGaAloD0MIlNv2PWqdZUCUhpRSlGgVTegDaBZHQHw74WgvlEJ1fZQoaAZoCWgPQwjT+lsCcF9hQJSGlFKUaBVN6ANoFkdAfHUtIkJKJ3V9lChoBmgJaA9DCHR+iuNAGmJAlIaUUpRoFU3oA2gWR0B8eEt7KJVKdX2UKGgGaAloD0MISBYwgVt9YkCUhpRSlGgVTegDaBZHQHzTzLW7OFB1fZQoaAZoCWgPQwiu9UVCW/VdQJSGlFKUaBVN6ANoFkdAfOaIbwSamXV9lChoBmgJaA9DCNFALJs5xE5AlIaUUpRoFUu0aBZHQHz0AIhQm/p1fZQoaAZoCWgPQwhfmbfqOgtiQJSGlFKUaBVN6ANoFkdAfP82CuloDnV9lChoBmgJaA9DCL6h8Nk6FV1AlIaUUpRoFU3oA2gWR0B9GN5kbxVidX2UKGgGaAloD0MIrI2xE15kZ0CUhpRSlGgVTegDaBZHQH0i9SVGCqZ1fZQoaAZoCWgPQwgb2ZWWEZpgQJSGlFKUaBVN6ANoFkdAfStQjlgc+HV9lChoBmgJaA9DCG5t4XmpaWFAlIaUUpRoFU3oA2gWR0B9LwTIvJzUdX2UKGgGaAloD0MIP6w3aoVhXUCUhpRSlGgVTegDaBZHQH0vDqSowVV1fZQoaAZoCWgPQwhIwVPIlXhmQJSGlFKUaBVN6ANoFkdAfTkjtXxOL3V9lChoBmgJaA9DCB3mywuwyWFAlIaUUpRoFU3oA2gWR0B9SmSgXdj5dX2UKGgGaAloD0MIsVBrmncUM0CUhpRSlGgVS7hoFkdAfUzwXIlt0nV9lChoBmgJaA9DCF01zxH5Hk1AlIaUUpRoFUuXaBZHQH1P47/4qPR1fZQoaAZoCWgPQwhI/Io1XGQBwJSGlFKUaBVN6ANoFkdAfVmnKnvUjXV9lChoBmgJaA9DCNbG2AkvYWJAlIaUUpRoFU3oA2gWR0B9Y1tk4FRpdX2UKGgGaAloD0MI/U0oRMCBMUCUhpRSlGgVS6BoFkdAfW3s0HhS+HV9lChoBmgJaA9DCGEZG7pZTWJAlIaUUpRoFU3oA2gWR0B9crVUdaMadX2UKGgGaAloD0MI+8kYH2bRTECUhpRSlGgVS6poFkdAfYIOhCdBjXV9lChoBmgJaA9DCOG1SxuO+WJAlIaUUpRoFU3oA2gWR0B9glHDrJKbdX2UKGgGaAloD0MI4xqfyf5VYkCUhpRSlGgVTegDaBZHQH2+j41xbSt1fZQoaAZoCWgPQwjsTKHzGi1IQJSGlFKUaBVL22gWR0B9vqM3qAz6dX2UKGgGaAloD0MIeAskKH7nYECUhpRSlGgVTegDaBZHQH4fbgTAWSF1fZQoaAZoCWgPQwhCW86luIxhQJSGlFKUaBVN6ANoFkdAfjWqKxcE/3V9lChoBmgJaA9DCNMvEW+dhmVAlIaUUpRoFU3oA2gWR0B+RT8sMAmzdX2UKGgGaAloD0MIujE9YYl5S0CUhpRSlGgVTegDaBZHQH5ST+m3vx91fZQoaAZoCWgPQwgH6pRHN+ViQJSGlFKUaBVN6ANoFkdAfm9GPgeijHV9lChoBmgJaA9DCDSCjevfKmNAlIaUUpRoFU3oA2gWR0B+hJxm03OwdX2UKGgGaAloD0MIvjJv1XWfY0CUhpRSlGgVTegDaBZHQH6I9XPqs2h1fZQoaAZoCWgPQwgTntDrTzFfQJSGlFKUaBVN6ANoFkdAfpVkbPyCnXV9lChoBmgJaA9DCNrhr8kaKF5AlIaUUpRoFU3oA2gWR0B+rkvmHP/rdX2UKGgGaAloD0MI4ZUkz/WsYkCUhpRSlGgVTegDaBZHQH6yI0IkZ751fZQoaAZoCWgPQwh1jgHZ6xlZQJSGlFKUaBVN6ANoFkdAfsl3OObRW3V9lChoBmgJaA9DCDE/NzRlZ1xAlIaUUpRoFU3oA2gWR0B+1kLH+6y0dX2UKGgGaAloD0MI4ZaPpKR4X0CUhpRSlGgVTegDaBZHQH7bJ1V5rxl1fZQoaAZoCWgPQwiCH9Ww3wMrwJSGlFKUaBVLrWgWR0B+3IngHeJpdX2UKGgGaAloD0MIOQzmrxC4YkCUhpRSlGgVTegDaBZHQH7pw/5ckdF1fZQoaAZoCWgPQwheFD3wMXpdQJSGlFKUaBVN6ANoFkdAfyMU3GXHBHV9lChoBmgJaA9DCIielEmNzmJAlIaUUpRoFU3oA2gWR0B/IyJQ+EAYdX2UKGgGaAloD0MIdjdPdcgUX0CUhpRSlGgVTegDaBZHQH81b+PzWf91fZQoaAZoCWgPQwh+/nvw2vtaQJSGlFKUaBVN6ANoFkdAf5UzeoDPnnV9lChoBmgJaA9DCEoLl1XYvkdAlIaUUpRoFUuxaBZHQH+e6tYB/7V1fZQoaAZoCWgPQwj76T9r/iplQJSGlFKUaBVN6ANoFkdAf6KhK15SnHV9lChoBmgJaA9DCED7kSIyYFVAlIaUUpRoFU3oA2gWR0B/rGVD8cdYdX2UKGgGaAloD0MIqYWSyanYY0CUhpRSlGgVTegDaBZHQH/ENcKPXCl1fZQoaAZoCWgPQwjGFRdH5Q5MQJSGlFKUaBVLl2gWR0B/xxLUTcqOdX2UKGgGaAloD0MI2PM1y2VDNUCUhpRSlGgVS8BoFkdAf82VcUuct3V9lChoBmgJaA9DCAO2gxH7YlxAlIaUUpRoFU3oA2gWR0B/1RzaK1ohdX2UKGgGaAloD0MIWOVC5V8bY0CUhpRSlGgVTegDaBZHQH/YnfAKv3d1fZQoaAZoCWgPQwgzqaENwIFhQJSGlFKUaBVN6ANoFkdAf+I3KB/ZunV9lChoBmgJaA9DCJ1mgXaHQWNAlIaUUpRoFU3oA2gWR0B/+dT0g8r7dX2UKGgGaAloD0MItU5cjtdPYECUhpRSlGgVTegDaBZHQIAIPaHsTnJ1fZQoaAZoCWgPQwjzr+WV6zVjQJSGlFKUaBVN6ANoFkdAgA8ju0CzTnV9lChoBmgJaA9DCMkgdxEmq2JAlIaUUpRoFU3oA2gWR0CAEe5hBqsVdX2UKGgGaAloD0MIIXam0HkUY0CUhpRSlGgVTegDaBZHQIASvikwevJ1fZQoaAZoCWgPQwhuUWaDTB5GQJSGlFKUaBVLvGgWR0CAFjMlkYoBdX2UKGgGaAloD0MI7x8L0SGKX0CUhpRSlGgVTegDaBZHQIAZQFgUlAx1fZQoaAZoCWgPQwg9LNSaZoNjQJSGlFKUaBVN6ANoFkdAgDakR8MNMHV9lChoBmgJaA9DCLucEhCT0GJAlIaUUpRoFU3oA2gWR0CAQIlDWsijdX2UKGgGaAloD0MIr5emCHCKXUCUhpRSlGgVTegDaBZHQIBxJI6Kcd51fZQoaAZoCWgPQwibIVUUL31jQJSGlFKUaBVN6ANoFkdAgH6TeoDPnnV9lChoBmgJaA9DCAYq499nMV5AlIaUUpRoFU3oA2gWR0CAjHbN8ma6dX2UKGgGaAloD0MIVd0jm6sfWkCUhpRSlGgVTegDaBZHQICOKo86mwd1fZQoaAZoCWgPQwiWXMXiN4xlQJSGlFKUaBVN6ANoFkdAgJGZu63AmHV9lChoBmgJaA9DCMx7nGnCyV9AlIaUUpRoFU3oA2gWR0CAlahs67uldX2UKGgGaAloD0MI1sdD313yYUCUhpRSlGgVTegDaBZHQICXa6+WWyF1fZQoaAZoCWgPQwhDccebfG5jQJSGlFKUaBVN6ANoFkdAgJxGfGuLaXV9lChoBmgJaA9DCDxodt3biGFAlIaUUpRoFU3oA2gWR0CAtmPVd5Y6dX2UKGgGaAloD0MIZ3v0hvt2ZECUhpRSlGgVTegDaBZHQIC/lbeMyad1fZQoaAZoCWgPQwhuF5rrNNpkQJSGlFKUaBVN6ANoFkdAgMIg7HQyAXV9lChoBmgJaA9DCOp7DcFxq2BAlIaUUpRoFU3oA2gWR0CAwuI6bONYdX2UKGgGaAloD0MI38K68W7DZECUhpRSlGgVTegDaBZHQIDGa88La251fZQoaAZoCWgPQwjPa+wS1XdlQJSGlFKUaBVN6ANoFkdAgMmvYWcjJXV9lChoBmgJaA9DCAQ3UrbIKmJAlIaUUpRoFU3oA2gWR0CA5alP8AJcdX2UKGgGaAloD0MI5ssLsA8nZUCUhpRSlGgVTegDaBZHQIDvBeE7GNt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb82ed2de761ab9fdcc0c4341e9437e54ebee24a7f403c1b32e7cda5b6e41dfd
|
3 |
+
size 144135
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f374e74fdd0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f374e74fe60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f374e74fef0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f374e74ff80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f374e756050>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f374e7560e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f374e756170>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f374e756200>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f374e756290>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f374e756320>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f374e7563b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f374e7a92d0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1655237881.466594,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAADa6RPYVj8LnuI3s8lw5vPHkBejpPyxI8AACAPwAAgD/NHyw9KRxJuhb9lztpJpg24lkDOyYSsLoAAIA/AACAP8Ayqj2Pxna6WNIpOZYjgjRxMsI6WqZAuAAAgD8AAIA/bS01PrDA2T6KQ4y9fl6+vmVRgzyy2rK8AAAAAAAAAABGcTs+SDyivBgrQjwz/sO6ZskOvmKGmrsAAIA/AACAP03dpL2PXhu6Vj4+O+schLyqSJI7nWdgPQAAAAAAAAAATZQEPeEokrrZ0Rk7qtKsNr+NELk6QTK6AACAPwAAgD8mMsY9j8I4ukvCWDtAQPm39VEEO9tXAboAAIA/AACAP4BKbz2FQ/K5yxFluk+UhDYjulM7nmqHOQAAgD8AAIA/5l9XPlqVJz+S5L28AD2yvmbfFz46mv+9AAAAAAAAAADNEDm8SL+LuiUFkrt6SIE1lgdYO42u4LQAAIA/AACAPwDffr1c40O68rhUO3+3gzfbeYo7ywxXNgAAgD8AAIA/Gl70Pa4ftjmif7G6HBr3trDnz7otx9o5AACAPwAAgD+ADxg9jxp3uu7M6zuEaLK1HbeBO45NpLQAAIA/AACAP9o8lD32xEq6PjdXOwutqraPjk67zft5ugAAgD8AAIA/zR8SvY+WH7rSErs6IDfdNzVrjLltqlu5AACAPwAAgD+UdJRiLg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gASVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICfoLPWIxYUCUhpRSlIwBbJRN6AOMAXSUR0B60XCrLhaUdX2UKGgGaAloD0MIkjzX92HrYUCUhpRSlGgVTegDaBZHQHrjxikO7QN1fZQoaAZoCWgPQwhyv0NRoP8zwJSGlFKUaBVLl2gWR0B65yZ1FH8TdX2UKGgGaAloD0MIT5FDxM3cYkCUhpRSlGgVTegDaBZHQHr0pS3solV1fZQoaAZoCWgPQwjWi6GcaN5cQJSGlFKUaBVN6ANoFkdAewNJYkmhNHV9lChoBmgJaA9DCCDQmbQpEWFAlIaUUpRoFU3oA2gWR0B7MGflIVdpdX2UKGgGaAloD0MIApoIG55e5D+UhpRSlGgVS69oFkdAezN4lhPTHHV9lChoBmgJaA9DCHmu78PBcWFAlIaUUpRoFU3oA2gWR0B7jTk/8l5XdX2UKGgGaAloD0MImGvRArRtXUCUhpRSlGgVTegDaBZHQHuPoMKCxu91fZQoaAZoCWgPQwhKtOTxNDxiQJSGlFKUaBVN6ANoFkdAe6MQ+EAYHnV9lChoBmgJaA9DCGahndMs7mBAlIaUUpRoFU3oA2gWR0B7tozFdcB2dX2UKGgGaAloD0MI9Bq7RPVyNECUhpRSlGgVS65oFkdAe7o/hl18s3V9lChoBmgJaA9DCKn7AKQ20l5AlIaUUpRoFU3oA2gWR0B70/uqm0mddX2UKGgGaAloD0MIxVkRNdEXaECUhpRSlGgVTXwCaBZHQHvd/029+PR1fZQoaAZoCWgPQwhKm6p7ZKBlQJSGlFKUaBVN6ANoFkdAe+FfDk2gnXV9lChoBmgJaA9DCL2qs1rgAGBAlIaUUpRoFU3oA2gWR0B75bjyWiUQdX2UKGgGaAloD0MIOkGbHD7ZKECUhpRSlGgVS8VoFkdAe+kf+jua4XV9lChoBmgJaA9DCPkvEATIP15AlIaUUpRoFU3oA2gWR0B76Smce8wpdX2UKGgGaAloD0MIYygn2lXTYECUhpRSlGgVTegDaBZHQHvytiYsunN1fZQoaAZoCWgPQwhIwVPIlVIhQJSGlFKUaBVLn2gWR0B8As23rleXdX2UKGgGaAloD0MI3nGKjmSkY0CUhpRSlGgVTegDaBZHQHwS655JK8N1fZQoaAZoCWgPQwiuKZDZWf9gQJSGlFKUaBVN6ANoFkdAfBzYzSCvo3V9lChoBmgJaA9DCB/zAYFOrmFAlIaUUpRoFU3oA2gWR0B8LOqgh8pkdX2UKGgGaAloD0MIlNv2PWqdZUCUhpRSlGgVTegDaBZHQHw74WgvlEJ1fZQoaAZoCWgPQwjT+lsCcF9hQJSGlFKUaBVN6ANoFkdAfHUtIkJKJ3V9lChoBmgJaA9DCHR+iuNAGmJAlIaUUpRoFU3oA2gWR0B8eEt7KJVKdX2UKGgGaAloD0MISBYwgVt9YkCUhpRSlGgVTegDaBZHQHzTzLW7OFB1fZQoaAZoCWgPQwiu9UVCW/VdQJSGlFKUaBVN6ANoFkdAfOaIbwSamXV9lChoBmgJaA9DCNFALJs5xE5AlIaUUpRoFUu0aBZHQHz0AIhQm/p1fZQoaAZoCWgPQwhfmbfqOgtiQJSGlFKUaBVN6ANoFkdAfP82CuloDnV9lChoBmgJaA9DCL6h8Nk6FV1AlIaUUpRoFU3oA2gWR0B9GN5kbxVidX2UKGgGaAloD0MIrI2xE15kZ0CUhpRSlGgVTegDaBZHQH0i9SVGCqZ1fZQoaAZoCWgPQwgb2ZWWEZpgQJSGlFKUaBVN6ANoFkdAfStQjlgc+HV9lChoBmgJaA9DCG5t4XmpaWFAlIaUUpRoFU3oA2gWR0B9LwTIvJzUdX2UKGgGaAloD0MIP6w3aoVhXUCUhpRSlGgVTegDaBZHQH0vDqSowVV1fZQoaAZoCWgPQwhIwVPIlXhmQJSGlFKUaBVN6ANoFkdAfTkjtXxOL3V9lChoBmgJaA9DCB3mywuwyWFAlIaUUpRoFU3oA2gWR0B9SmSgXdj5dX2UKGgGaAloD0MIsVBrmncUM0CUhpRSlGgVS7hoFkdAfUzwXIlt0nV9lChoBmgJaA9DCF01zxH5Hk1AlIaUUpRoFUuXaBZHQH1P47/4qPR1fZQoaAZoCWgPQwhI/Io1XGQBwJSGlFKUaBVN6ANoFkdAfVmnKnvUjXV9lChoBmgJaA9DCNbG2AkvYWJAlIaUUpRoFU3oA2gWR0B9Y1tk4FRpdX2UKGgGaAloD0MI/U0oRMCBMUCUhpRSlGgVS6BoFkdAfW3s0HhS+HV9lChoBmgJaA9DCGEZG7pZTWJAlIaUUpRoFU3oA2gWR0B9crVUdaMadX2UKGgGaAloD0MI+8kYH2bRTECUhpRSlGgVS6poFkdAfYIOhCdBjXV9lChoBmgJaA9DCOG1SxuO+WJAlIaUUpRoFU3oA2gWR0B9glHDrJKbdX2UKGgGaAloD0MI4xqfyf5VYkCUhpRSlGgVTegDaBZHQH2+j41xbSt1fZQoaAZoCWgPQwjsTKHzGi1IQJSGlFKUaBVL22gWR0B9vqM3qAz6dX2UKGgGaAloD0MIeAskKH7nYECUhpRSlGgVTegDaBZHQH4fbgTAWSF1fZQoaAZoCWgPQwhCW86luIxhQJSGlFKUaBVN6ANoFkdAfjWqKxcE/3V9lChoBmgJaA9DCNMvEW+dhmVAlIaUUpRoFU3oA2gWR0B+RT8sMAmzdX2UKGgGaAloD0MIujE9YYl5S0CUhpRSlGgVTegDaBZHQH5ST+m3vx91fZQoaAZoCWgPQwgH6pRHN+ViQJSGlFKUaBVN6ANoFkdAfm9GPgeijHV9lChoBmgJaA9DCDSCjevfKmNAlIaUUpRoFU3oA2gWR0B+hJxm03OwdX2UKGgGaAloD0MIvjJv1XWfY0CUhpRSlGgVTegDaBZHQH6I9XPqs2h1fZQoaAZoCWgPQwgTntDrTzFfQJSGlFKUaBVN6ANoFkdAfpVkbPyCnXV9lChoBmgJaA9DCNrhr8kaKF5AlIaUUpRoFU3oA2gWR0B+rkvmHP/rdX2UKGgGaAloD0MI4ZUkz/WsYkCUhpRSlGgVTegDaBZHQH6yI0IkZ751fZQoaAZoCWgPQwh1jgHZ6xlZQJSGlFKUaBVN6ANoFkdAfsl3OObRW3V9lChoBmgJaA9DCDE/NzRlZ1xAlIaUUpRoFU3oA2gWR0B+1kLH+6y0dX2UKGgGaAloD0MI4ZaPpKR4X0CUhpRSlGgVTegDaBZHQH7bJ1V5rxl1fZQoaAZoCWgPQwiCH9Ww3wMrwJSGlFKUaBVLrWgWR0B+3IngHeJpdX2UKGgGaAloD0MIOQzmrxC4YkCUhpRSlGgVTegDaBZHQH7pw/5ckdF1fZQoaAZoCWgPQwheFD3wMXpdQJSGlFKUaBVN6ANoFkdAfyMU3GXHBHV9lChoBmgJaA9DCIielEmNzmJAlIaUUpRoFU3oA2gWR0B/IyJQ+EAYdX2UKGgGaAloD0MIdjdPdcgUX0CUhpRSlGgVTegDaBZHQH81b+PzWf91fZQoaAZoCWgPQwh+/nvw2vtaQJSGlFKUaBVN6ANoFkdAf5UzeoDPnnV9lChoBmgJaA9DCEoLl1XYvkdAlIaUUpRoFUuxaBZHQH+e6tYB/7V1fZQoaAZoCWgPQwj76T9r/iplQJSGlFKUaBVN6ANoFkdAf6KhK15SnHV9lChoBmgJaA9DCED7kSIyYFVAlIaUUpRoFU3oA2gWR0B/rGVD8cdYdX2UKGgGaAloD0MIqYWSyanYY0CUhpRSlGgVTegDaBZHQH/ENcKPXCl1fZQoaAZoCWgPQwjGFRdH5Q5MQJSGlFKUaBVLl2gWR0B/xxLUTcqOdX2UKGgGaAloD0MI2PM1y2VDNUCUhpRSlGgVS8BoFkdAf82VcUuct3V9lChoBmgJaA9DCAO2gxH7YlxAlIaUUpRoFU3oA2gWR0B/1RzaK1ohdX2UKGgGaAloD0MIWOVC5V8bY0CUhpRSlGgVTegDaBZHQH/YnfAKv3d1fZQoaAZoCWgPQwgzqaENwIFhQJSGlFKUaBVN6ANoFkdAf+I3KB/ZunV9lChoBmgJaA9DCJ1mgXaHQWNAlIaUUpRoFU3oA2gWR0B/+dT0g8r7dX2UKGgGaAloD0MItU5cjtdPYECUhpRSlGgVTegDaBZHQIAIPaHsTnJ1fZQoaAZoCWgPQwjzr+WV6zVjQJSGlFKUaBVN6ANoFkdAgA8ju0CzTnV9lChoBmgJaA9DCMkgdxEmq2JAlIaUUpRoFU3oA2gWR0CAEe5hBqsVdX2UKGgGaAloD0MIIXam0HkUY0CUhpRSlGgVTegDaBZHQIASvikwevJ1fZQoaAZoCWgPQwhuUWaDTB5GQJSGlFKUaBVLvGgWR0CAFjMlkYoBdX2UKGgGaAloD0MI7x8L0SGKX0CUhpRSlGgVTegDaBZHQIAZQFgUlAx1fZQoaAZoCWgPQwg9LNSaZoNjQJSGlFKUaBVN6ANoFkdAgDakR8MNMHV9lChoBmgJaA9DCLucEhCT0GJAlIaUUpRoFU3oA2gWR0CAQIlDWsijdX2UKGgGaAloD0MIr5emCHCKXUCUhpRSlGgVTegDaBZHQIBxJI6Kcd51fZQoaAZoCWgPQwibIVUUL31jQJSGlFKUaBVN6ANoFkdAgH6TeoDPnnV9lChoBmgJaA9DCAYq499nMV5AlIaUUpRoFU3oA2gWR0CAjHbN8ma6dX2UKGgGaAloD0MIVd0jm6sfWkCUhpRSlGgVTegDaBZHQICOKo86mwd1fZQoaAZoCWgPQwiWXMXiN4xlQJSGlFKUaBVN6ANoFkdAgJGZu63AmHV9lChoBmgJaA9DCMx7nGnCyV9AlIaUUpRoFU3oA2gWR0CAlahs67uldX2UKGgGaAloD0MI1sdD313yYUCUhpRSlGgVTegDaBZHQICXa6+WWyF1fZQoaAZoCWgPQwhDccebfG5jQJSGlFKUaBVN6ANoFkdAgJxGfGuLaXV9lChoBmgJaA9DCDxodt3biGFAlIaUUpRoFU3oA2gWR0CAtmPVd5Y6dX2UKGgGaAloD0MIZ3v0hvt2ZECUhpRSlGgVTegDaBZHQIC/lbeMyad1fZQoaAZoCWgPQwhuF5rrNNpkQJSGlFKUaBVN6ANoFkdAgMIg7HQyAXV9lChoBmgJaA9DCOp7DcFxq2BAlIaUUpRoFU3oA2gWR0CAwuI6bONYdX2UKGgGaAloD0MI38K68W7DZECUhpRSlGgVTegDaBZHQIDGa88La251fZQoaAZoCWgPQwjPa+wS1XdlQJSGlFKUaBVN6ANoFkdAgMmvYWcjJXV9lChoBmgJaA9DCAQ3UrbIKmJAlIaUUpRoFU3oA2gWR0CA5alP8AJcdX2UKGgGaAloD0MI5ssLsA8nZUCUhpRSlGgVTegDaBZHQIDvBeE7GNt1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e51a6783dbee47905c3d52158ded8d1680238834adef368994ee978f74c3ca6
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6de3c7213e25428810eb46211713d2b342d02d2f2ce7074b16492277cbc610e
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75ed14407e99f2529f1aa41f5347cc44a2c5575b6c343de6f813c9d427dbae83
|
3 |
+
size 249044
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.1426650764907, "std_reward": 22.055134243529103, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-14T20:31:22.155839"}
|