update paper
Browse files
README.md
CHANGED
|
@@ -6,14 +6,11 @@ tags:
|
|
| 6 |
- token-classification
|
| 7 |
widget:
|
| 8 |
- text: >-
|
| 9 |
-
In
|
| 10 |
example_title: example 1
|
| 11 |
- text: >-
|
| 12 |
-
|
| 13 |
example_title: example 2
|
| 14 |
-
- text: >-
|
| 15 |
-
Windows XP was originally bundled with Internet Explorer 6.
|
| 16 |
-
example_title: example 3
|
| 17 |
language:
|
| 18 |
- en
|
| 19 |
datasets:
|
|
@@ -29,14 +26,31 @@ The model uses _self-regularization_ during the finetuning process, allowing it
|
|
| 29 |
The model recognizes 12 fine-grained named entities: `Algorithm`, `Application`, `Architecture`, `Data_Structure`, `Device`, `Error_Name`, `General_Concept`, `Language`,
|
| 30 |
`Library`, `License`, `Operating_System`, and `Protocol`.
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
## Model details
|
| 33 |
|
| 34 |
-
Paper:
|
| 35 |
|
| 36 |
Code: https://github.com/taidnguyen/software_entity_recognition
|
| 37 |
|
| 38 |
Finetuned from model: `bert-large-cased`
|
| 39 |
|
|
|
|
|
|
|
| 40 |
## How to use
|
| 41 |
|
| 42 |
```python
|
|
|
|
| 6 |
- token-classification
|
| 7 |
widget:
|
| 8 |
- text: >-
|
| 9 |
+
In the field of computer graphics, a graphics processing unit (GPU) utilizes algorithms such as ray tracing, a rendering technique, to create realistic lighting effects in applications like Adobe Acrobat and Microsoft Excel.
|
| 10 |
example_title: example 1
|
| 11 |
- text: >-
|
| 12 |
+
By utilizing the TensorFlow and FastAPI libraries with Python, we are optimizing neural network training on devices like the Samsung Gear S2 and Intel T5300 processor.
|
| 13 |
example_title: example 2
|
|
|
|
|
|
|
|
|
|
| 14 |
language:
|
| 15 |
- en
|
| 16 |
datasets:
|
|
|
|
| 26 |
The model recognizes 12 fine-grained named entities: `Algorithm`, `Application`, `Architecture`, `Data_Structure`, `Device`, `Error_Name`, `General_Concept`, `Language`,
|
| 27 |
`Library`, `License`, `Operating_System`, and `Protocol`.
|
| 28 |
|
| 29 |
+
| Type | Examples |
|
| 30 |
+
|------------------|-------------------------------------------------------|
|
| 31 |
+
| Algorithm | Auction algorithm, Collaborative filtering |
|
| 32 |
+
| Application | Adobe Acrobat, Microsoft Excel |
|
| 33 |
+
| Architecture | Graphics processing unit, Wishbone |
|
| 34 |
+
| Data_Structure | Array, Hash table, mXOR linked list |
|
| 35 |
+
| Device | Samsung Gear S2, iPad, Intel T5300 |
|
| 36 |
+
| Error Name | Buffer overflow, Memory leak |
|
| 37 |
+
| General_Concept | Memory management, Nouvelle AI |
|
| 38 |
+
| Language | C++, Java, Python, Rust |
|
| 39 |
+
| Library | Beautiful Soup, FastAPI |
|
| 40 |
+
| License | Cryptix General License, MIT License |
|
| 41 |
+
| Operating_System | Linux, Ubuntu, Red Hat OS, MorphOS |
|
| 42 |
+
| Protocol | TLS, FTPS, HTTP 404 |
|
| 43 |
+
|
| 44 |
## Model details
|
| 45 |
|
| 46 |
+
Paper: https://arxiv.org/abs/2308.10564
|
| 47 |
|
| 48 |
Code: https://github.com/taidnguyen/software_entity_recognition
|
| 49 |
|
| 50 |
Finetuned from model: `bert-large-cased`
|
| 51 |
|
| 52 |
+
Checkpoint for base version: https://huggingface.co/taidng/wikiser-bert-base
|
| 53 |
+
|
| 54 |
## How to use
|
| 55 |
|
| 56 |
```python
|