Update Readme
Browse files
README.md
CHANGED
@@ -1,62 +1,101 @@
|
|
|
|
1 |
---
|
2 |
-
|
3 |
-
|
4 |
-
|
|
|
5 |
tags:
|
6 |
-
-
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
-
|
11 |
-
|
12 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
13 |
---
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
It has been trained using [TRL](https://github.com/huggingface/trl).
|
19 |
|
20 |
-
|
|
|
|
|
21 |
|
22 |
```python
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
```
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
- TRL: 0.21.0
|
42 |
-
- Transformers: 4.55.0
|
43 |
-
- Pytorch: 2.6.0+cu124
|
44 |
-
- Datasets: 4.0.0
|
45 |
-
- Tokenizers: 0.21.4
|
46 |
|
47 |
-
|
48 |
|
|
|
|
|
|
|
49 |
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
```bibtex
|
54 |
-
@misc{vonwerra2022trl,
|
55 |
-
title = {{TRL: Transformer Reinforcement Learning}},
|
56 |
-
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
57 |
-
year = 2020,
|
58 |
-
journal = {GitHub repository},
|
59 |
-
publisher = {GitHub},
|
60 |
-
howpublished = {\url{https://github.com/huggingface/trl}}
|
61 |
-
}
|
62 |
-
```
|
|
|
1 |
+
|
2 |
---
|
3 |
+
# Model Card metadata: https://huggingface.co/docs/hub/model-cards#model-card-metadata
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- en
|
7 |
tags:
|
8 |
+
- llm
|
9 |
+
- fine-tune
|
10 |
+
- qlora
|
11 |
+
- llama
|
12 |
+
- bitcoin
|
13 |
+
- finance
|
14 |
pipeline_tag: text-generation
|
15 |
+
base_model: meta-llama/Llama-3.2-3B-Instruct
|
16 |
+
datasets:
|
17 |
+
- tahamajs/bitcoin-llm-finetuning-dataset
|
18 |
---
|
19 |
+
```
|
20 |
+
|
21 |
+
### 📋 Overview
|
22 |
|
23 |
+
This model, `llama-3.2-3b-instruct-bitcoin-analyst_best`, is a fine-tuned version of the **Llama-3.2-3B-Instruct** large language model. It has been specialized for the domain of **Bitcoin analysis and cryptocurrency**. The goal of this fine-tuning was to enhance the model's ability to provide detailed, accurate, and contextually relevant information about Bitcoin, blockchain technology, market trends, and related topics, acting as a virtual Bitcoin analyst.
|
24 |
|
25 |
+
The fine-tuning was performed using **QLoRA** on the `tahamajs/bitcoin-llm-finetuning-dataset` dataset.
|
|
|
26 |
|
27 |
+
### 🚀 Usage
|
28 |
+
|
29 |
+
You can easily use this model with the `transformers` library. The fine-tuned weights are stored as a PEFT adapter.
|
30 |
|
31 |
```python
|
32 |
+
import torch
|
33 |
+
from peft import PeftModel
|
34 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
35 |
+
|
36 |
+
# Load the base model
|
37 |
+
base_model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
38 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
39 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
base_model_id,
|
41 |
+
device_map="auto",
|
42 |
+
torch_dtype=torch.bfloat16,
|
43 |
+
)
|
44 |
+
|
45 |
+
# Load the fine-tuned adapter
|
46 |
+
peft_model_id = "tahamajs/llama-3.2-3b-instruct-bitcoin-analyst_best"
|
47 |
+
model = PeftModel.from_pretrained(base_model, peft_model_id)
|
48 |
|
49 |
+
# Example inference
|
50 |
+
prompt = "What are the key differences between Bitcoin and Ethereum?"
|
51 |
+
messages = [
|
52 |
+
{"role": "user", "content": prompt}
|
53 |
+
]
|
54 |
+
input_ids = tokenizer.apply_chat_template(
|
55 |
+
messages,
|
56 |
+
add_generation_prompt=True,
|
57 |
+
return_tensors="pt"
|
58 |
+
).to(model.device)
|
59 |
+
|
60 |
+
outputs = model.generate(input_ids=input_ids, max_new_tokens=256)
|
61 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
62 |
```
|
63 |
|
64 |
+
### 💻 Training Details
|
65 |
+
|
66 |
+
This section provides an overview of the fine-tuning process.
|
67 |
|
68 |
+
* **Base Model:** `meta-llama/Llama-3.2-3B-Instruct`
|
69 |
+
* **Dataset:** `tahamajs/bitcoin-llm-finetuning-dataset`
|
70 |
+
* **Fine-Tuning Method:** QLoRA (Quantized Low-Rank Adaptation)
|
71 |
+
* **Training Framework:** `trl.SFTTrainer`
|
72 |
+
* **Hardware:** [E.g., NVIDIA RTX 4070, 16GB VRAM]
|
73 |
+
* **Software Stack:** PyTorch, Transformers, TRL, PEFT, BitsAndBytes
|
74 |
|
75 |
+
#### ⚙️ Hyperparameters
|
76 |
|
77 |
+
The following hyperparameters were used for fine-tuning:
|
78 |
|
79 |
+
| Hyperparameter | Value |
|
80 |
+
| :-------------------------- | :------------------------- |
|
81 |
+
| `num_train_epochs` | 1 |
|
82 |
+
| `per_device_train_batch_size` | 1 |
|
83 |
+
| `gradient_accumulation_steps` | 2 |
|
84 |
+
| `learning_rate` | 2e-4 |
|
85 |
+
| `optim` | `paged_adamw_32bit` |
|
86 |
+
| `bf16` | `True` |
|
87 |
+
| `max_grad_norm` | 0.3 |
|
88 |
+
| `r` (LoRA rank) | 16 |
|
89 |
+
| `lora_alpha` | 16 |
|
90 |
|
91 |
+
### ⚠️ Limitations and Biases
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
As a model fine-tuned on a specific dataset, it may have the following limitations:
|
94 |
|
95 |
+
* **Domain Specificity:** The model's knowledge is primarily focused on Bitcoin and cryptocurrency. It may perform less effectively on general knowledge tasks.
|
96 |
+
* **Data Cutoff:** The model's knowledge is limited to the data it was trained on. It may not be aware of events, market changes, or new developments that occurred after the dataset's creation.
|
97 |
+
* **Potential Biases:** The model's responses may reflect biases present in the training data.
|
98 |
|
99 |
+
### 📜 License
|
100 |
|
101 |
+
This model is licensed under the Apache 2.0 license, inherited from its base model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|