tahamajs commited on
Commit
d660d03
·
verified ·
1 Parent(s): e13576e

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +115 -138
README.md CHANGED
@@ -1,209 +1,186 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  base_model: meta-llama/Llama-3.2-3B-Instruct
3
- library_name: peft
 
4
  pipeline_tag: text-generation
5
- tags:
6
- - base_model:adapter:meta-llama/Llama-3.2-3B-Instruct
7
- - lora
8
- - sft
9
- - transformers
10
- - trl
11
  ---
12
 
13
- # Model Card for Model ID
14
-
15
- <!-- Provide a quick summary of what the model is/does. -->
16
-
17
 
 
18
 
19
  ## Model Details
20
 
21
  ### Model Description
22
 
23
- <!-- Provide a longer summary of what this model is. -->
24
-
25
 
 
 
 
 
26
 
27
- - **Developed by:** [More Information Needed]
28
- - **Funded by [optional]:** [More Information Needed]
29
- - **Shared by [optional]:** [More Information Needed]
30
- - **Model type:** [More Information Needed]
31
- - **Language(s) (NLP):** [More Information Needed]
32
- - **License:** [More Information Needed]
33
- - **Finetuned from model [optional]:** [More Information Needed]
34
 
35
  ### Model Sources [optional]
36
 
37
- <!-- Provide the basic links for the model. -->
38
-
39
- - **Repository:** [More Information Needed]
40
- - **Paper [optional]:** [More Information Needed]
41
- - **Demo [optional]:** [More Information Needed]
42
 
43
  ## Uses
44
 
45
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
-
47
  ### Direct Use
48
 
49
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
50
-
51
- [More Information Needed]
52
-
53
- ### Downstream Use [optional]
54
-
55
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
56
-
57
- [More Information Needed]
58
 
59
  ### Out-of-Scope Use
60
 
61
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
62
-
63
- [More Information Needed]
64
 
65
  ## Bias, Risks, and Limitations
66
 
67
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
68
-
69
- [More Information Needed]
70
 
71
  ### Recommendations
72
 
73
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
74
-
75
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
76
 
77
  ## How to Get Started with the Model
78
 
79
- Use the code below to get started with the model.
80
-
81
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82
 
83
  ## Training Details
84
 
85
  ### Training Data
86
 
87
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
88
-
89
- [More Information Needed]
90
 
91
  ### Training Procedure
92
 
93
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
94
 
95
- #### Preprocessing [optional]
96
 
97
- [More Information Needed]
 
 
 
 
 
 
 
 
 
98
 
 
99
 
100
  #### Training Hyperparameters
101
 
102
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
103
-
104
- #### Speeds, Sizes, Times [optional]
105
-
106
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
107
-
108
- [More Information Needed]
109
-
110
- ## Evaluation
111
-
112
- <!-- This section describes the evaluation protocols and provides the results. -->
113
-
114
- ### Testing Data, Factors & Metrics
115
 
116
- #### Testing Data
117
 
118
- <!-- This should link to a Dataset Card if possible. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Factors
123
-
124
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
125
-
126
- [More Information Needed]
127
-
128
- #### Metrics
129
-
130
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
131
-
132
- [More Information Needed]
133
-
134
- ### Results
135
-
136
- [More Information Needed]
137
-
138
- #### Summary
139
-
140
-
141
-
142
- ## Model Examination [optional]
143
-
144
- <!-- Relevant interpretability work for the model goes here -->
145
-
146
- [More Information Needed]
147
 
148
  ## Environmental Impact
149
 
150
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
151
-
152
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
153
-
154
- - **Hardware Type:** [More Information Needed]
155
- - **Hours used:** [More Information Needed]
156
- - **Cloud Provider:** [More Information Needed]
157
- - **Compute Region:** [More Information Needed]
158
- - **Carbon Emitted:** [More Information Needed]
159
 
160
  ## Technical Specifications [optional]
161
 
162
  ### Model Architecture and Objective
163
 
164
- [More Information Needed]
165
 
166
  ### Compute Infrastructure
167
 
168
- [More Information Needed]
169
-
170
- #### Hardware
171
-
172
- [More Information Needed]
173
-
174
  #### Software
175
 
176
- [More Information Needed]
177
-
178
- ## Citation [optional]
179
-
180
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
181
-
182
- **BibTeX:**
183
-
184
- [More Information Needed]
185
-
186
- **APA:**
187
-
188
- [More Information Needed]
189
-
190
- ## Glossary [optional]
191
-
192
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
193
-
194
- [More Information Needed]
195
-
196
- ## More Information [optional]
197
-
198
- [More Information Needed]
199
 
200
  ## Model Card Authors [optional]
201
 
202
- [More Information Needed]
203
 
204
  ## Model Card Contact
205
 
206
  [More Information Needed]
 
207
  ### Framework versions
208
 
209
- - PEFT 0.17.0
 
 
1
  ---
2
+ license: llama3
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ tags:
7
+ - llama-3
8
+ - llama-3.2
9
+ - bitcoin
10
+ - finance
11
+ - instruction-following
12
+ - fine-tuning
13
+ - merged
14
  base_model: meta-llama/Llama-3.2-3B-Instruct
15
+ datasets:
16
+ - tahamajs/bitcoin-llm-finetuning-dataset
17
  pipeline_tag: text-generation
 
 
 
 
 
 
18
  ---
19
 
20
+ # Model Card for Llama-3.2-3B-Instruct-Bitcoin-Analyst-v2
 
 
 
21
 
22
+ This repository contains a specialized version of `meta-llama/Llama-3.2-3B-Instruct`, expertly fine-tuned to function as a **Bitcoin and cryptocurrency market analyst**. The model is the result of a multi-stage "continuation training" process, making it highly capable of understanding and responding to complex instructions in the financial domain.
23
 
24
  ## Model Details
25
 
26
  ### Model Description
27
 
28
+ This model is a Causal Language Model (CLM) based on the Llama 3.2 3B Instruct architecture. It was developed through a sequential fine-tuning process to enhance its knowledge and instruction-following capabilities for topics related to Bitcoin, blockchain technology, and financial markets.
 
29
 
30
+ The training procedure involved two main stages:
31
+ 1. **Initial Specialization:** The base model was first merged with a high-performing LoRA adapter (`tahamajs/llama-3.2-3b-instruct-bitcoin-analyst-perfect`) to provide a strong foundation of domain-specific knowledge.
32
+ 2. **Continuation Training:** A new LoRA adapter was then trained on top of this already-specialized model using the `tahamajs/bitcoin-llm-finetuning-dataset`.
33
+ 3. **Final Merge:** The final model available here is the result of merging the second adapter, combining the knowledge from all stages into a single, powerful model.
34
 
35
+ - **Developed by:** tahamajs
36
+ - **Model type:** Causal Language Model, Instruction-Tuned
37
+ - **Language(s) (NLP):** English (en)
38
+ - **License:** Llama 3 Community License Agreement
39
+ - **Finetuned from model:** `meta-llama/Llama-3.2-3B-Instruct`
 
 
40
 
41
  ### Model Sources [optional]
42
 
43
+ - **Repository:** `tahamajs/llama-3.2-3b-instruct-bitcoin-analyst-perfect_v2`
 
 
 
 
44
 
45
  ## Uses
46
 
 
 
47
  ### Direct Use
48
 
49
+ This model is intended for direct use as an instruction-following chatbot for topics related to Bitcoin and cryptocurrency. It can be used for question answering, analysis, and explanation of complex financial and technical concepts. For best results, prompts should be formatted using the Llama 3 chat template.
 
 
 
 
 
 
 
 
50
 
51
  ### Out-of-Scope Use
52
 
53
+ This model is **not a financial advisor**. It should not be used for making investment decisions. The model's knowledge is limited to its training data and it may produce inaccurate or outdated information. It is not designed for general-purpose conversation outside of its specialized domain.
 
 
54
 
55
  ## Bias, Risks, and Limitations
56
 
57
+ This model inherits the limitations of the base Llama 3.2 model and the biases present in its training data. In the financial domain, there is a risk of generating overly optimistic or pessimistic statements that could be misinterpreted as financial advice. Users should be aware of these risks and verify any factual information independently.
 
 
58
 
59
  ### Recommendations
60
 
61
+ Users should critically evaluate all outputs from this model, especially when they pertain to financial metrics or price predictions. We recommend clearly stating to any end-users that the text is generated by an AI and is not a substitute for professional financial advice.
 
 
62
 
63
  ## How to Get Started with the Model
64
 
65
+ Use the code below to load and run the model using the `transformers` library.
66
+
67
+ ```python
68
+ import torch
69
+ from transformers import AutoModelForCausalLM, AutoTokenizer
70
+
71
+ # Use the ID of this repository
72
+ model_id = "tahamajs/llama-3.2-3b-instruct-bitcoin-analyst-perfect_v2"
73
+
74
+ # Load the tokenizer and model
75
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
76
+ model = AutoModelForCausalLM.from_pretrained(
77
+ model_id,
78
+ torch_dtype=torch.bfloat16,
79
+ device_map="auto",
80
+ )
81
+
82
+ # Use the Llama 3 chat template for instruction-following
83
+ messages = [
84
+ {"role": "user", "content": "What is the Bitcoin halving and what is its expected impact on the price?"},
85
+ ]
86
+
87
+ # Apply the chat template and tokenize
88
+ input_ids = tokenizer.apply_chat_template(
89
+ messages,
90
+ add_generation_prompt=True,
91
+ return_tensors="pt"
92
+ ).to(model.device)
93
+
94
+ # Generate a response
95
+ outputs = model.generate(
96
+ input_ids,
97
+ max_new_tokens=512,
98
+ do_sample=True,
99
+ temperature=0.6,
100
+ top_p=0.9,
101
+ )
102
+
103
+ # Decode and print the output
104
+ response = outputs[0][input_ids.shape[-1]:]
105
+ print(tokenizer.decode(response, skip_special_tokens=True))
106
+ ````
107
 
108
  ## Training Details
109
 
110
  ### Training Data
111
 
112
+ The second stage of fine-tuning was performed on the `tahamajs/bitcoin-llm-finetuning-dataset`. This dataset contains instruction-response pairs related to Bitcoin, market analysis, and blockchain technology.
 
 
113
 
114
  ### Training Procedure
115
 
116
+ #### Preprocessing
117
 
118
+ The training data was formatted into the Llama 3 chat template using the following structure for each example:
119
 
120
+ ```
121
+ <|begin_of_text|>
122
+ <|start_header_id|>user<|end_header_id|>
123
+ {instruction}
124
+ {input}
125
+ <|eot_id|>
126
+ <|start_header_id|>assistant<|end_header_id|>
127
+ {output}
128
+ <|eot_id|>
129
+ ```
130
 
131
+ The loss was calculated only on the assistant's response tokens.
132
 
133
  #### Training Hyperparameters
134
 
135
+ - **Training regime:** `bf16` mixed precision with QLoRA
136
+ - **LoRA `r`:** 16
137
+ - **LoRA `alpha`:** 32
138
+ - **LoRA `dropout`:** 0.1
139
+ - **LoRA `target_modules`:** `q_proj`, `k_proj`, `v_proj`, `o_proj`, `gate_proj`, `up_proj`, `down_proj`
140
+ - **`learning_rate`:** 1e-4
141
+ - **`num_train_epochs`:** 1
142
+ - **`per_device_train_batch_size`:** 1
143
+ - **`gradient_accumulation_steps`:** 8
144
+ - **`optimizer`:** paged\_adamw\_32bit
145
+ - **`lr_scheduler_type`:** cosine
 
 
146
 
147
+ #### Training Loss
148
 
149
+ The training loss shows a clear downward trend, indicating that the model successfully learned from the new data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
 
151
  ## Environmental Impact
152
 
153
+ - **Hardware Type:** Not specified
154
+ - **Hours used:** Not specified
155
+ - **Cloud Provider:** Not specified
156
+ - **Compute Region:** Not specified
157
+ - **Carbon Emitted:** Not estimated
 
 
 
 
158
 
159
  ## Technical Specifications [optional]
160
 
161
  ### Model Architecture and Objective
162
 
163
+ This is a decoder-only transformer based on the Llama 3.2 architecture. It was fine-tuned using a causal language modeling objective.
164
 
165
  ### Compute Infrastructure
166
 
 
 
 
 
 
 
167
  #### Software
168
 
169
+ - [PyTorch](https://pytorch.org/)
170
+ - [Transformers](https://github.com/huggingface/transformers)
171
+ - [PEFT](https://github.com/huggingface/peft) (v0.17.0)
172
+ - [TRL](https://github.com/huggingface/trl)
173
+ - [BitsAndBytes](https://github.com/TimDettmers/bitsandbytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
  ## Model Card Authors [optional]
176
 
177
+ tahamajs
178
 
179
  ## Model Card Contact
180
 
181
  [More Information Needed]
182
+
183
  ### Framework versions
184
 
185
+ - PEFT 0.17.0
186
+