--- library_name: peft license: mit base_model: microsoft/Phi-3-medium-128k-instruct tags: - trl - sft - generated_from_trainer model-index: - name: Adapter-Phi-3-medium-128k-instruct-lora-hrdx-gptq results: [] --- # Adapter-Phi-3-medium-128k-instruct-lora-hrdx-gptq This model is a fine-tuned version of [microsoft/Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 1.4023 | 30 | 2.3964 | | No log | 2.8046 | 60 | 2.1247 | | No log | 4.2299 | 90 | 1.8968 | | 2.2305 | 5.6322 | 120 | 1.7274 | | 2.2305 | 7.0575 | 150 | 1.5368 | | 2.2305 | 8.4598 | 180 | 1.3934 | | 1.5516 | 9.8621 | 210 | 1.3389 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.2 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3