File size: 5,305 Bytes
3995f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e83ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3995f2f
c0e83ed
 
 
3995f2f
 
 
 
 
c0e83ed
 
 
3995f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e83ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3995f2f
 
 
 
 
 
c0e83ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language:
- en
library_name: transformers
base_model: meta-llama/Llama-3.2-3B-Instruct
base_model_relation: finetune
tags:
- llama
- chatgpt-prompts
- role-playing
- instruction-tuning
- conversational
- lora
- peft
license: llama3.2
datasets:
- fka/awesome-chatgpt-prompts
pipeline_tag: text-generation
model-index:
- name: Llama-3.2-3B-ChatGPT-Prompts-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: awesome-chatgpt-prompts
      type: fka/awesome-chatgpt-prompts
    metrics:
    - name: Training Loss
      type: loss
      value: 0.28
---

# Llama-3.2-3B-ChatGPT-Prompts-Instruct

## Model Description

This is a fine-tuned version of Meta's Llama-3.2-3B-Instruct model, specifically trained on the awesome-chatgpt-prompts dataset to excel at role-playing and prompt-based interactions. The model has been optimized to understand and respond to various professional and creative roles with enhanced accuracy and context awareness.

## Model Details

- **Base Model:** meta-llama/Llama-3.2-3B-Instruct
- **Model Type:** Causal Language Model
- **Fine-tuning Method:** LoRA (Low-Rank Adaptation)
- **Training Dataset:** fka/awesome-chatgpt-prompts
- **Model Size:** 3B parameters
- **Quantization:** 4-bit (BitsAndBytesConfig)

## Training Details

### Training Configuration
- **LoRA Rank:** 4
- **LoRA Alpha:** 8
- **Learning Rate:** 3e-4
- **Batch Size:** 8
- **Epochs:** 10
- **Max Sequence Length:** 64
- **Gradient Accumulation Steps:** 3
- **Optimizer:** AdamW with cosine learning rate scheduler
- **Weight Decay:** 0.01
- **Warmup Ratio:** 0.05

### Training Results
- **Final Training Loss:** 0.28
- **Training Steps:** 190
- **Training Runtime:** 399.47 seconds
- **Convergence:** Stable convergence with proper gradient norms

## Usage

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

model_name = "sweatSmile/Llama-3.2-3B-ChatGPT-Prompts-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.float16,
    device_map="auto"
)

# Example usage
prompt = "Linux Terminal"
messages = [
    {"role": "user", "content": prompt}
]

# Apply chat template
formatted_prompt = tokenizer.apply_chat_template(
    messages, 
    tokenize=False, 
    add_generation_prompt=True
)

inputs = tokenizer(formatted_prompt, return_tensors="pt")
with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        temperature=0.7,
        do_sample=True,
        pad_token_id=tokenizer.eos_token_id
    )

response = tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
print(response)
```

## Intended Use

This model is designed for:
- **Role-playing scenarios:** Acting as various professionals (developers, translators, terminals, etc.)
- **Educational purposes:** Learning different professional contexts and responses
- **Creative writing assistance:** Generating contextually appropriate responses for different roles
- **Prompt engineering research:** Understanding how models respond to role-based instructions

## Capabilities

The model excels at:
- Understanding and adopting various professional roles
- Generating contextually appropriate responses
- Maintaining consistency within assigned roles
- Following complex instructions with role-specific knowledge
- Adapting communication style based on the requested persona

## Example Interactions

**Input:** "English Translator and Improver"
**Output:** The model will adopt the role of a professional translator and language improver, offering translation services and language enhancement capabilities.

**Input:** "Linux Terminal" 
**Output:** The model will simulate a Linux terminal environment, responding to commands as a real terminal would.

## Limitations

- Model responses are generated based on training data and may not always reflect real-world accuracy
- Performance may vary depending on the complexity and specificity of role-based requests
- The model should not be used for generating harmful, biased, or inappropriate content
- Outputs should be verified for factual accuracy, especially in professional contexts

## Ethical Considerations

- This model should be used responsibly and ethically
- Users should be aware that this is an AI model and not substitute for real professional expertise
- The model should not be used to impersonate real individuals or for deceptive purposes
- Always disclose when content is AI-generated in professional or public contexts

## Framework Versions
- **Transformers:** 4.x
- **PyTorch:** 2.x
- **PEFT:** Latest
- **Datasets:** Latest
- **Tokenizers:** Latest

## License

This model inherits the license from the base Llama-3.2-3B-Instruct model. Please refer to Meta's license terms for usage restrictions and requirements.

## Citation

```bibtex
@model{llama32-chatgpt-prompts-instruct,
  title={Llama-3.2-3B-ChatGPT-Prompts-Instruct},
  author={sweatSmile},
  year={2025},
  base_model={meta-llama/Llama-3.2-3B-Instruct},
  dataset={fka/awesome-chatgpt-prompts}
}
```

## Contact

For questions, issues, or feedback regarding this model, please create an issue in the model repository or contact the model author.