Upload 2 files
Browse files- engine.py +390 -0
- requirements.txt +4 -0
engine.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import multiprocessing
|
| 2 |
+
import os
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import requests
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
import re
|
| 7 |
+
import string
|
| 8 |
+
import nltk
|
| 9 |
+
import time
|
| 10 |
+
nltk.download('punkt')
|
| 11 |
+
nltk.download('stopwords')
|
| 12 |
+
nltk.download('wordnet')
|
| 13 |
+
nltk.download('cmudict')
|
| 14 |
+
from nltk.corpus import stopwords
|
| 15 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
| 16 |
+
from nltk.corpus import cmudict
|
| 17 |
+
|
| 18 |
+
folderpath = r'C:\Users/suwes/SentimentEngine/'
|
| 19 |
+
textfile_path = f"{folderpath}inputtext/"
|
| 20 |
+
stopword_path = f"{folderpath}StopWords/"
|
| 21 |
+
masterdict_path = f"{folderpath}MasterDictionary/"
|
| 22 |
+
|
| 23 |
+
def createdf():
|
| 24 |
+
inputxlsx = os.path.join(folderpath, "Input.xlsx")
|
| 25 |
+
dfxlsx = pd.read_excel(inputxlsx)
|
| 26 |
+
print(dfxlsx)
|
| 27 |
+
df_urls = dfxlsx['URL']
|
| 28 |
+
#print(df_urls)
|
| 29 |
+
return dfxlsx
|
| 30 |
+
|
| 31 |
+
df = createdf()
|
| 32 |
+
|
| 33 |
+
def extract(df):
|
| 34 |
+
#extracting article text from urls
|
| 35 |
+
def extract_urltext(url):
|
| 36 |
+
response = requests.get(url)#send GET req to url
|
| 37 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 38 |
+
article_title = soup.find('title').get_text()#find and extract tile of article
|
| 39 |
+
article_content = soup.find('div', class_= 'td-pb-span8 td-main-content')#find and extract article text
|
| 40 |
+
article_text = ''
|
| 41 |
+
if article_content:
|
| 42 |
+
for para in article_content.find_all(['p', 'h1', 'h2', 'h3', 'h4', 'h5', 'h6']):
|
| 43 |
+
article_text += para.get_text()
|
| 44 |
+
#print(article_title)
|
| 45 |
+
#print(article_text)
|
| 46 |
+
return article_title, article_text
|
| 47 |
+
|
| 48 |
+
#url = 'https://insights.blackcoffer.com/rising-it-cities-and-its-impact-on-the-economy-environment-infrastructure-and-city-life-by-the-year-2040/'
|
| 49 |
+
#extract_urltext(url)
|
| 50 |
+
#article_title, article_text = extract_urltext(url)
|
| 51 |
+
|
| 52 |
+
for index, row in df.iterrows():
|
| 53 |
+
url = row['URL']
|
| 54 |
+
url_id = row['URL_ID']
|
| 55 |
+
article_title, article_text = extract_urltext(url)
|
| 56 |
+
#save text to file
|
| 57 |
+
filename = f"{folderpath}inputtext/{url_id}.txt"
|
| 58 |
+
with open(filename, 'w', encoding = 'utf-8') as file:
|
| 59 |
+
file.write(article_title+ '\n\n' +article_text)
|
| 60 |
+
print(f"text saved to file {filename}")
|
| 61 |
+
|
| 62 |
+
#extract data
|
| 63 |
+
extract(df)
|
| 64 |
+
|
| 65 |
+
def transform(df):
|
| 66 |
+
#cleaning stop words
|
| 67 |
+
#reading stop words from stopword files
|
| 68 |
+
def read_stopwords(stopword_folder):
|
| 69 |
+
stopwords = set()
|
| 70 |
+
filenames = os.listdir(stopword_folder)
|
| 71 |
+
# process each file
|
| 72 |
+
for filename in filenames:
|
| 73 |
+
filepath = os.path.join(stopword_folder, filename)
|
| 74 |
+
#read stop words from each file
|
| 75 |
+
with open(filepath, 'r', encoding= 'utf-8', errors='ignore') as file:
|
| 76 |
+
stopwords.update(map(str.strip, file.readlines()))
|
| 77 |
+
return stopwords
|
| 78 |
+
#stop words
|
| 79 |
+
stopwords = read_stopwords(stopword_path)
|
| 80 |
+
|
| 81 |
+
#cleaning stop words from text
|
| 82 |
+
def clean_stopwords(text, stopwords):
|
| 83 |
+
#tokenize text
|
| 84 |
+
words = word_tokenize(text)
|
| 85 |
+
#remove stop words from text
|
| 86 |
+
cleaned_words = [word for word in words if word.lower() not in stopwords]
|
| 87 |
+
#reconstructing cleaned text
|
| 88 |
+
cleaned_text = ' '.join(cleaned_words)
|
| 89 |
+
return cleaned_text
|
| 90 |
+
|
| 91 |
+
#cleaning stop words from a directory/multiple files
|
| 92 |
+
def clean_stopwords_directory(directory, stopwords):
|
| 93 |
+
#list all files in directory
|
| 94 |
+
filenames = os.listdir(directory)
|
| 95 |
+
#cleaning each file
|
| 96 |
+
for filename in filenames:
|
| 97 |
+
filepath = os.path.join(directory, filename)
|
| 98 |
+
#read text from each file
|
| 99 |
+
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
|
| 100 |
+
text = file.read()
|
| 101 |
+
#clean stop words from file text
|
| 102 |
+
cleaned_text = clean_stopwords(text, stopwords)
|
| 103 |
+
#write back cleaned text
|
| 104 |
+
with open(filepath, 'w', encoding= 'utf-8', errors='ignore') as file:
|
| 105 |
+
file.write(cleaned_text)
|
| 106 |
+
print(f"cleaned text from {filename}")
|
| 107 |
+
|
| 108 |
+
clean_stopwords_directory(textfile_path, stopwords)
|
| 109 |
+
#creating dictionary of positive and negative words
|
| 110 |
+
def create_posneg_dict(masterdict_path, stopwords):
|
| 111 |
+
poswords = set()
|
| 112 |
+
negwords = set()
|
| 113 |
+
#read positivewords file
|
| 114 |
+
with open(os.path.join(masterdict_path, 'positive-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
|
| 115 |
+
for line in file:
|
| 116 |
+
words = line.strip().split()
|
| 117 |
+
for word in words:
|
| 118 |
+
if word.lower() not in stopwords:
|
| 119 |
+
poswords.add(word.lower())
|
| 120 |
+
#read negativewords file
|
| 121 |
+
with open(os.path.join(masterdict_path, 'negative-words.txt'), 'r', encoding='utf-8', errors='ignore') as file:
|
| 122 |
+
for line in file:
|
| 123 |
+
words = line.strip().split()
|
| 124 |
+
for word in words:
|
| 125 |
+
if word.lower() not in stopwords:
|
| 126 |
+
negwords.add(word.lower())
|
| 127 |
+
return poswords, negwords
|
| 128 |
+
|
| 129 |
+
positivewords, negativewords = create_posneg_dict(masterdict_path, stopwords)
|
| 130 |
+
#print(positivewords)
|
| 131 |
+
#print(negativewords)
|
| 132 |
+
return stopwords, positivewords, negativewords
|
| 133 |
+
|
| 134 |
+
#cleaning/transforming data
|
| 135 |
+
stopwords, positivewords, negativewords = transform(df)
|
| 136 |
+
|
| 137 |
+
#load data
|
| 138 |
+
result_df = pd.DataFrame()
|
| 139 |
+
def loadoutput(folderpath, result_df):
|
| 140 |
+
exceloutfilepath = f"{folderpath}Output.xlsx"
|
| 141 |
+
result_df.to_excel(exceloutfilepath, index=False)
|
| 142 |
+
print(f"output file saved to {exceloutfilepath}")
|
| 143 |
+
print(f"analysis time: {int((time.time() - starttime)//3600)} hours {int(((time.time() - starttime)%3600)//60)} minutes {int((time.time() - starttime)%60)} seconds")
|
| 144 |
+
|
| 145 |
+
#process text files
|
| 146 |
+
def runengine(df, stopwords, files_subset, dflist):
|
| 147 |
+
#sentimental analysis
|
| 148 |
+
#calculating variables
|
| 149 |
+
def calculate_positivescore(words, positivewords):
|
| 150 |
+
positivescore = sum(1 for word in words if word.lower() in positivewords)
|
| 151 |
+
return positivescore
|
| 152 |
+
|
| 153 |
+
def calculate_negativescore(words, negativewords):
|
| 154 |
+
negativescore = (sum(-1 for word in words if word.lower() in negativewords))*(-1)
|
| 155 |
+
return negativescore
|
| 156 |
+
|
| 157 |
+
#analysis of readability
|
| 158 |
+
def calc_readibility(words, sentences):
|
| 159 |
+
#calculate average length of sentences
|
| 160 |
+
avg_sentencelen = len(words)/len(sentences) if sentences else 0
|
| 161 |
+
#calculate % of complex words
|
| 162 |
+
complexwords = [word for word in words if syllable_count(word)>2]
|
| 163 |
+
percent_complexwords = len(complexwords)/len(words)*100 if words else 0
|
| 164 |
+
#calculate fog index
|
| 165 |
+
fog_index = 0.4*(avg_sentencelen + percent_complexwords)
|
| 166 |
+
return avg_sentencelen, percent_complexwords, fog_index
|
| 167 |
+
|
| 168 |
+
#average words per text
|
| 169 |
+
def avg_wordspersentence(words, sentences):
|
| 170 |
+
if len(sentences) > 0:
|
| 171 |
+
averagewords = len(words)/len(sentences)
|
| 172 |
+
return averagewords
|
| 173 |
+
else: return 0
|
| 174 |
+
|
| 175 |
+
#complex word count
|
| 176 |
+
def syllable_count(word):
|
| 177 |
+
d = cmudict.dict()
|
| 178 |
+
if word.lower() in d:
|
| 179 |
+
return [len(list(y for y in x if y[-1].isdigit())) for x in d[word.lower()]][0]
|
| 180 |
+
else:
|
| 181 |
+
return 0
|
| 182 |
+
def complexwords_count(words):
|
| 183 |
+
complexwords = [word for word in words if syllable_count(word)>2]
|
| 184 |
+
return len(complexwords)
|
| 185 |
+
|
| 186 |
+
#clean words count
|
| 187 |
+
def cleanwords_count(words, stopwords):
|
| 188 |
+
punctuations = set(string.punctuation)
|
| 189 |
+
cleaned_words = [word.lower() for word in words if word.lower() not in stopwords and word.lower() not in punctuations]
|
| 190 |
+
return len(cleaned_words)
|
| 191 |
+
|
| 192 |
+
#syllable count per word
|
| 193 |
+
#vowel syllable count per word
|
| 194 |
+
def vowel_syllable(word):
|
| 195 |
+
vowels = 'aeiouy'
|
| 196 |
+
count = 0
|
| 197 |
+
endings = 'es', 'ed', 'e'
|
| 198 |
+
#exceptions for word with endings
|
| 199 |
+
word = word.lower().strip()
|
| 200 |
+
if word.endswith(endings):
|
| 201 |
+
word = word[:-2]#subtract 2 characters from ending of word
|
| 202 |
+
elif word.emdswith('le'):
|
| 203 |
+
word = word[:-2]
|
| 204 |
+
endings = ''
|
| 205 |
+
elif word.endswith('ing'):
|
| 206 |
+
word = word[:-3]#subtract 3 characters from ending of word
|
| 207 |
+
endings = ''
|
| 208 |
+
#counting vowels in word
|
| 209 |
+
if len(word)<=3:
|
| 210 |
+
return 1
|
| 211 |
+
for index, letter in enumerate(word):
|
| 212 |
+
if letter in vowels and (index ==0 or word[index -1] not in vowels):
|
| 213 |
+
count +=1
|
| 214 |
+
#handling y as vowel at end of word
|
| 215 |
+
if word.endswith('y') and word[-2] not in vowels:
|
| 216 |
+
count +=1
|
| 217 |
+
return count
|
| 218 |
+
#per text
|
| 219 |
+
def vowel_syllable_perword(words):
|
| 220 |
+
total_syllables = sum(syllable_count(word) for word in words)
|
| 221 |
+
return total_syllables
|
| 222 |
+
|
| 223 |
+
#personal pronouns
|
| 224 |
+
def count_pronouns(text):
|
| 225 |
+
pattern = r'\b(?:I|we|my|ours|us)\b'#define regex pattern for matching pronouns
|
| 226 |
+
#find all matches
|
| 227 |
+
matches = re.findall(pattern, text, flags=re.IGNORECASE)
|
| 228 |
+
#excluse 'US' when reffering to USA
|
| 229 |
+
matches_fin = [matches for match in matches if match.lower() != 'us']
|
| 230 |
+
countpron = len(matches_fin)#count of pronouns
|
| 231 |
+
return countpron
|
| 232 |
+
|
| 233 |
+
#average word length
|
| 234 |
+
def calc_avg_wordlength(words):
|
| 235 |
+
total_chars = sum(len(word) for word in words)#calculate total charactes in text
|
| 236 |
+
total_words = len(words)
|
| 237 |
+
if total_words != 0:
|
| 238 |
+
avg_wordlength = total_chars/total_words
|
| 239 |
+
else: avg_wordlength = 0
|
| 240 |
+
return avg_wordlength
|
| 241 |
+
|
| 242 |
+
def appendtodf(url_idkey, calc_values, process_df):
|
| 243 |
+
rowindex = df[df['URL_ID'] == url_idkey].index #get index of row where url_id = url_idkey
|
| 244 |
+
if not rowindex.empty:
|
| 245 |
+
idx_toupdate = rowindex[0]
|
| 246 |
+
# Create a new row with the columns from the original DataFrame df
|
| 247 |
+
new_row = pd.DataFrame(columns=process_df.columns)
|
| 248 |
+
# Assign the existing values from df to the new row at the corresponding index
|
| 249 |
+
new_row.loc[0, process_df.columns[:2]] = df.loc[idx_toupdate, ['URL_ID', 'URL']]
|
| 250 |
+
# Update the new row with the calculated values
|
| 251 |
+
for col, value in calc_values.items():
|
| 252 |
+
new_row[col] = value
|
| 253 |
+
# Add the new row to the process_df
|
| 254 |
+
process_df = process_df._append(new_row, ignore_index=True)
|
| 255 |
+
print(f"Result updated for {url_idkey}")
|
| 256 |
+
else:
|
| 257 |
+
print(f"!not found {url_idkey}")
|
| 258 |
+
return process_df
|
| 259 |
+
|
| 260 |
+
#process data/ processing each file
|
| 261 |
+
process_df = pd.DataFrame(columns=df.columns)
|
| 262 |
+
for filename in files_subset:
|
| 263 |
+
filepath = os.path.join(textfile_path, filename)
|
| 264 |
+
#to update values for each URL_ID
|
| 265 |
+
url_idkey = re.search(r'blackassign\d{4}', filepath).group()
|
| 266 |
+
if os.path.isfile(filepath):
|
| 267 |
+
with open(filepath, 'r', encoding='utf-8', errors='ignore') as file:
|
| 268 |
+
text = file.read()
|
| 269 |
+
#tokenize text
|
| 270 |
+
words = word_tokenize(text)
|
| 271 |
+
sentences = sent_tokenize(text)
|
| 272 |
+
totalwords = len(words)
|
| 273 |
+
|
| 274 |
+
#calculate positive score
|
| 275 |
+
positive_score = calculate_positivescore(words, positivewords)
|
| 276 |
+
print(f"{filename} positive socre: {positive_score}")
|
| 277 |
+
|
| 278 |
+
#calculate negative score
|
| 279 |
+
negative_score = calculate_negativescore(words, negativewords)
|
| 280 |
+
print(f"{filename} negative socre: {negative_score}")
|
| 281 |
+
|
| 282 |
+
#calculate polarity score
|
| 283 |
+
polarity_score = (positive_score - negative_score)/((positive_score+negative_score)+0.000001)
|
| 284 |
+
print(f"{filename} polarity socre: {polarity_score}")
|
| 285 |
+
|
| 286 |
+
#calculate subjective score
|
| 287 |
+
subjectivity_score = (positive_score+negative_score)/((totalwords)+0.000001)
|
| 288 |
+
print(f"{filename} subjectivity socre: {subjectivity_score}")
|
| 289 |
+
|
| 290 |
+
#readibility analysis
|
| 291 |
+
avg_sentencelen, percent_complexwords, fog_index = calc_readibility(words, sentences)
|
| 292 |
+
print(f"{filename} avg sentencelength: {avg_sentencelen}")
|
| 293 |
+
#load(df, "AVG SENTENCE LENGTH",avg_sentencelen, url_idkey)
|
| 294 |
+
print(f"{filename} percentage of complex words: {percent_complexwords}")
|
| 295 |
+
#load(df, "PERCENTAGE OF COMPLEX WORDS",percent_complexwords, url_idkey)
|
| 296 |
+
print(f"{filename} Fog Index: {fog_index}")
|
| 297 |
+
|
| 298 |
+
#average number of words per sentence
|
| 299 |
+
avg_wordper_sentence = avg_wordspersentence(words, sentences)
|
| 300 |
+
print(f"{filename} avg words per sentence: {avg_wordper_sentence}")
|
| 301 |
+
|
| 302 |
+
#complex word count
|
| 303 |
+
complexword_count = complexwords_count(words)
|
| 304 |
+
print(f"{filename} complex words count: {complexword_count}")
|
| 305 |
+
|
| 306 |
+
#word count
|
| 307 |
+
cleanword_count = cleanwords_count(words, stopwords)
|
| 308 |
+
print(f"{filename} clean words count: {cleanword_count}")
|
| 309 |
+
|
| 310 |
+
#syllable count per word
|
| 311 |
+
syllablecount_perword = vowel_syllable_perword(words)
|
| 312 |
+
print(f"{filename} syllable count per word: {syllablecount_perword}")
|
| 313 |
+
|
| 314 |
+
#personal pronouns
|
| 315 |
+
pronouns_count = count_pronouns(text)
|
| 316 |
+
print(f"{filename} personal pronouns count: {pronouns_count}")
|
| 317 |
+
|
| 318 |
+
#avg word length
|
| 319 |
+
avg_wordlength = calc_avg_wordlength(words)
|
| 320 |
+
print(f"{filename} avg word length: {avg_wordlength}")
|
| 321 |
+
else: print(f"df not updated for {filename}!")
|
| 322 |
+
|
| 323 |
+
calc_values = {
|
| 324 |
+
"POSITIVE SCORE": positive_score,
|
| 325 |
+
"NEGATIVE SCORE": negative_score,
|
| 326 |
+
"POLARITY SCORE": polarity_score,
|
| 327 |
+
"SUBJECTIVITY SCORE": subjectivity_score,
|
| 328 |
+
"AVG SENTENCE LENGTH": avg_sentencelen,
|
| 329 |
+
"PERCENTAGE OF COMPLEX WORDS": percent_complexwords,
|
| 330 |
+
"FOG INDEX": fog_index,
|
| 331 |
+
"AVG NUMBER OF WORDS PER SENTENCE": avg_wordper_sentence,
|
| 332 |
+
"COMPLEX WORD COUNT": complexword_count,
|
| 333 |
+
"WORD COUNT": cleanword_count,
|
| 334 |
+
"SYLLABLE PER WORD": syllablecount_perword,
|
| 335 |
+
"PERSONAL PRONOUNS": pronouns_count,
|
| 336 |
+
"AVG WORD LENGTH": avg_wordlength
|
| 337 |
+
}
|
| 338 |
+
try:
|
| 339 |
+
process_df = appendtodf(url_idkey,calc_values, process_df)
|
| 340 |
+
except Exception as e:
|
| 341 |
+
print(e)
|
| 342 |
+
print(process_df)
|
| 343 |
+
dflist.append(process_df)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
#runengine(df, stopwords, files_subset, dflist)
|
| 348 |
+
if __name__ == '__main__':
|
| 349 |
+
starttime = time.time()
|
| 350 |
+
files_toprocess = os.listdir(textfile_path)
|
| 351 |
+
#files_toprocess = [r'blackassign0049.txt', r'blackassign0099.txt', r'blackassign0100.txt']
|
| 352 |
+
num_processes = multiprocessing.cpu_count()
|
| 353 |
+
print(str(num_processes)+ " CPUs")
|
| 354 |
+
files_perprocess = len(files_toprocess) // num_processes
|
| 355 |
+
print(files_perprocess)
|
| 356 |
+
|
| 357 |
+
processes = []
|
| 358 |
+
# Create a Manager object to share a list among processes
|
| 359 |
+
manager = multiprocessing.Manager()
|
| 360 |
+
dflist = manager.list()
|
| 361 |
+
|
| 362 |
+
for i in range(num_processes):
|
| 363 |
+
try:
|
| 364 |
+
start = i*files_perprocess
|
| 365 |
+
end = (i+1)*files_perprocess if i != num_processes-1 else len(files_toprocess)
|
| 366 |
+
files_subset = files_toprocess[start:end]
|
| 367 |
+
|
| 368 |
+
p = multiprocessing.Process(target=runengine, args =(df, stopwords, files_subset, dflist))
|
| 369 |
+
processes.append(p)
|
| 370 |
+
p.start()
|
| 371 |
+
except Exception as e:
|
| 372 |
+
print(e)
|
| 373 |
+
|
| 374 |
+
print("waiting for all processes to end...")
|
| 375 |
+
for i in processes:
|
| 376 |
+
print(i)
|
| 377 |
+
for process in processes:
|
| 378 |
+
try:
|
| 379 |
+
process.join()
|
| 380 |
+
except Exception as e:
|
| 381 |
+
print(e)
|
| 382 |
+
for i in processes:
|
| 383 |
+
print(i)
|
| 384 |
+
|
| 385 |
+
print(str(len(dflist))+" result dataframes obtained.")
|
| 386 |
+
result_df = pd.concat(dflist, ignore_index=True)
|
| 387 |
+
result_df = result_df.sort_values(by='URL_ID')
|
| 388 |
+
print(result_df)
|
| 389 |
+
|
| 390 |
+
loadoutput(folderpath, result_df)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
pandas==2.1.4
|
| 2 |
+
requests==2.31.0
|
| 3 |
+
beautifulsoup4==4.12.2
|
| 4 |
+
nltk==3.8.1
|