suriya7 commited on
Commit
6ec6737
·
verified ·
1 Parent(s): 486dcb3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -34
README.md CHANGED
@@ -16,39 +16,26 @@ This model is based on the Facebook BART (Bidirectional and Auto-Regressive Tran
16
  - **Fine-tuned for**: Text Summarization
17
  - **Fine-tuning dataset**: [xsum]
18
 
19
- ## Usage:
20
-
21
- ### Installation:
22
-
23
- You can install the necessary libraries using pip:
24
 
25
  ```bash
26
- pip install transformers
27
- pip datasets
28
- pip evaluate
29
- pip rouge_score
30
-
31
- ## Example Usage
32
-
33
- Here's an example of how to use this model for text summarization:
34
-
35
- ```python
36
- # Load model and tokenizer
37
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
38
-
39
- tokenizer = AutoTokenizer.from_pretrained("your_model_name")
40
- model = AutoModelForSeq2SeqLM.from_pretrained("your_model_name")
41
-
42
- # Input text to be summarized
43
- text_to_summarize = "Insert your text to summarize here..."
44
-
45
- # Generate summary
46
- inputs = tokenizer([text_to_summarize], max_length=1024, return_tensors='pt', truncation=True)
47
- summary_ids = model.generate(inputs['input_ids'], max_length=100, num_beams=4, early_stopping=True)
48
- summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
49
-
50
- # Print the generated summary
51
- print("Input Text:")
52
- print(text_to_summarize)
53
- print("\nGenerated Summary:")
54
- print(summary)
 
16
  - **Fine-tuned for**: Text Summarization
17
  - **Fine-tuning dataset**: [xsum]
18
 
19
+ ### Inference
 
 
 
 
20
 
21
  ```bash
22
+ # Load model directly
23
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
24
+
25
+ tokenizer = AutoTokenizer.from_pretrained("suriya7/text_summarize")
26
+ model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/text_summarize")
27
+
28
+ def generate_summary(text):
29
+
30
+ inputs = tokenizer([text], max_length=1024, return_tensors='pt', truncation=True)
31
+
32
+ summary_ids = model.generate(inputs['input_ids'],max_new_tokens=100, do_sample=False)
33
+
34
+ summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
35
+ return summary
36
+
37
+ text_to_summarize = "Now, there is no doubt that one of the most important aspects of any Pixel phone is its camera.
38
+ And there might be good news for all camera lovers. Rumours have suggested that the Pixel 9 could come with a telephoto lens,
39
+ improving its photography capabilities even further. Google will likely continue to focus on using AI to
40
+ enhance its camera performance, in order to make sure that Pixel phones remain top contenders in the world of mobile photography"
41
+ summary = generate_summary(text_to_summarize)