suriya7 commited on
Commit
9dfe246
·
verified ·
1 Parent(s): dd00c68

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -169
README.md CHANGED
@@ -3,197 +3,98 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ ### Inference
7
 
8
+ ```python
9
 
10
+ # Load model directly
11
+ from transformers import AutoModelForCausalLM, GPT2Tokenizer
12
 
13
+ tokenizer = GPT2Tokenizer.from_pretrained("suriya7/ChatGPT-2.V2")
14
+ model = AutoModelForCausalLM.from_pretrained("suriya7/ChatGPT-2.V2")
15
+ ```
16
 
17
+ ### Chatting
18
 
19
+ ```python
20
 
21
+ import torch
22
 
23
+ prompt = """
24
+ <|im_start|>system\nYou are a helpful AI assistant named Securitron, trained by Aquilax.<|im_end|>
25
+ """
26
 
27
+ # Keep a list for the last one conversation exchanges
28
+ conversation_history = []
 
 
 
 
 
29
 
30
+ while True:
31
+ user_prompt = input("User Question: ")
32
+ if user_prompt.lower() == 'break':
33
+ break
34
 
35
+ # Format the user's input
36
+ user = f"""<|im_start|>user
37
+ {user_prompt}<|im_end|>"""
38
 
39
+ # Add the user's question to the conversation history
40
+ conversation_history.append(user)
 
41
 
42
+ # Ensure conversation starts with a user's input and keep only the last 2 exchanges (4 turns)
43
+ conversation_history = conversation_history[-5:]
44
 
45
+ # Build the full prompt
46
+ current_prompt = prompt + "\n".join(conversation_history)
47
 
48
+ # Tokenize the prompt
49
+ encodeds = tokenizer(current_prompt, return_tensors="pt", truncation=True).input_ids
50
 
51
+ # Move model and inputs to the appropriate device
52
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
53
+ model.to(device)
54
+ inputs = encodeds.to(device)
55
 
56
+ # Create an empty list to store generated tokens
57
+ generated_ids = inputs
58
 
59
+ # Start generating tokens one by one
60
+ assistant_response = ""
61
+ # print("Assistant: ", end="", flush=True) # Print "Assistant:" once before streaming starts
62
+ for _ in range(512): # Specify a max token limit for streaming
63
+ # Generate the next token in the sequence
64
+ next_token = model.generate(
65
+ generated_ids,
66
+ max_new_tokens=1,
67
+ pad_token_id=50259,
68
+ eos_token_id=50259,
69
+ num_return_sequences=1,
70
+ do_sample=True, # Use sampling for more diverse responses
71
+ top_k=50, # Limit to the top-k tokens to sample from
72
+ temperature=0.7, # Adjust temperature for randomness
73
+ top_p =0.90
74
+ )
75
+
76
+ # Add the generated token to the list
77
+ generated_ids = torch.cat([generated_ids, next_token[:, -1:]], dim=1)
78
+
79
+ # Decode the generated token (flatten it to a list of IDs)
80
+ token_id = next_token[0, -1].item() # Extract the last token as an integer
81
+ token = tokenizer.decode([token_id], skip_special_tokens=True)
82
 
83
+
84
+ # Append the token to the ongoing response
85
+ assistant_response += token
86
+ print(token, end="", flush=True) # Stream the token in real time
87
 
88
+ # If EOS token is encountered, stop generating
89
+ if token_id == 50259: # EOS token
90
+ break
91
 
92
+ print() # Print a newline after streaming is complete
93
 
94
+ # Add the assistant's response to the conversation history
95
+ conversation_history.append(f"<|im_start|>{assistant_response.strip()}<|im_end|>")
96
 
97
+ ```
98
 
 
99
 
 
100