superflash41 commited on
Commit
98dcebb
·
verified ·
1 Parent(s): 41cfecb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -12
README.md CHANGED
@@ -1,23 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  # Fire Classification Models
2
 
3
- This repository contains several Keras models trained for fire vs. no-fire image classification:
4
 
5
  - **DenseNet**: `densenet_final.keras`
6
  - **ResNet**: `resnet_final.keras`
7
  - **Xception**: `xception_final.keras`
8
  - **Ensemble**: `ensemble_model.keras`
9
 
10
- ## Usage
11
 
12
- 1. Download the `.keras` file you want (e.g. `ensemble_model.keras`).
13
- 2. Load it in Python:
14
- ```python
15
- import tensorflow as tf
 
16
 
17
- model = tf.keras.models.load_model("ensemble_model.keras")
18
- prediction = model.predict(...)
19
- ```
20
 
21
- ---
22
- license: mit
23
- ---
 
1
+ ---
2
+ language: "en"
3
+ library_name: "keras"
4
+ tags:
5
+ - image-classification
6
+ - fire-detection
7
+ license: "mit"
8
+ datasets:
9
+ - flame
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ model_creator: "CPSquad"
14
+ course: "1INF52 (PUCP)"
15
+ ---
16
+
17
  # Fire Classification Models
18
 
19
+ These Keras models were developed by **CPSquad** as part of a Deep Learning project for the **1INF52 course** at **PUCP**. We trained them on the **FLAME dataset**, which provides UAV-based imagery of wildfires.
20
 
21
  - **DenseNet**: `densenet_final.keras`
22
  - **ResNet**: `resnet_final.keras`
23
  - **Xception**: `xception_final.keras`
24
  - **Ensemble**: `ensemble_model.keras`
25
 
26
+ ## Hyperparameter Tuning
27
 
28
+ Using [Keras Tuner](https://keras.io/keras_tuner/), we optimized:
29
+ - Dropout rate
30
+ - L2 regularization factor
31
+ - Number of layers unfrozen
32
+ - Learning rate
33
 
34
+ These improvements helped boost performance metrics such as **accuracy** and **F1-score**, allowing us to reach SOTA results on FLAME’s fire/no-fire classification task.
 
 
35