Saving train state of step 30000
Browse files- checkpoint-30000-epoch-0/model.safetensors +3 -0
- checkpoint-30000-epoch-0/model_1.safetensors +3 -0
- checkpoint-30000-epoch-0/optimizer.bin +3 -0
- checkpoint-30000-epoch-0/random_states_0.pkl +3 -0
- checkpoint-30000-epoch-0/scheduler.bin +3 -0
- distil-whisper/events.out.tfevents.1715222264.server02.2131186.0 +2 -2
- run_distillation.py +500 -499
checkpoint-30000-epoch-0/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c31d18417e3e13a2b79e96d44b8d2606c5959da8b343e76537d86e347ef699e0
|
3 |
+
size 3025686376
|
checkpoint-30000-epoch-0/model_1.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b395c8a7e2bda655c415580106288d0387c227efd641bf4e11c1cd735fdb37a
|
3 |
+
size 4361070048
|
checkpoint-30000-epoch-0/optimizer.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf15242062ca5376a7a4b6d4c62824351fc03bf226f26e3ebce4c39d0fda992c
|
3 |
+
size 955539578
|
checkpoint-30000-epoch-0/random_states_0.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9aba43da2b6b6c5db39f9e95c1de6261bae932477b796a2c7647da423d6f691b
|
3 |
+
size 14344
|
checkpoint-30000-epoch-0/scheduler.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e57843c87ed32da9817e4fc3151d8fac1890f0df43086ca762177a37f6f342d
|
3 |
+
size 1064
|
distil-whisper/events.out.tfevents.1715222264.server02.2131186.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be15824155b2dfea692fe22799842b0a069874a3c52f787c080d056a07612fbe
|
3 |
+
size 377077
|
run_distillation.py
CHANGED
@@ -1219,7 +1219,7 @@ def main():
|
|
1219 |
if training_args.do_eval:
|
1220 |
for eval_split in all_eval_splits:
|
1221 |
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
|
1222 |
-
map_fn_eval = partial(
|
1223 |
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
|
1224 |
)
|
1225 |
with accelerator.main_process_first():
|
@@ -1229,327 +1229,430 @@ def main():
|
|
1229 |
else map_fn_eval()
|
1230 |
)
|
1231 |
|
1232 |
-
|
1233 |
-
|
1234 |
-
|
1235 |
-
|
1236 |
-
|
1237 |
-
|
1238 |
-
|
1239 |
-
|
1240 |
-
|
1241 |
-
|
1242 |
-
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
-
|
1247 |
-
|
1248 |
-
|
1249 |
-
|
1250 |
-
|
1251 |
-
|
1252 |
-
|
1253 |
-
|
1254 |
-
|
1255 |
-
|
1256 |
-
|
1257 |
-
|
1258 |
-
|
1259 |
-
|
1260 |
-
|
1261 |
-
|
1262 |
-
#
|
1263 |
-
#
|
1264 |
-
#
|
1265 |
-
#
|
1266 |
-
#
|
1267 |
-
|
1268 |
-
|
1269 |
-
|
1270 |
-
|
1271 |
-
|
1272 |
-
|
1273 |
-
|
1274 |
-
|
1275 |
-
|
1276 |
-
|
1277 |
-
|
1278 |
-
|
1279 |
-
|
1280 |
-
|
|
|
1281 |
|
1282 |
-
|
1283 |
-
|
1284 |
-
|
1285 |
-
|
1286 |
-
|
1287 |
-
|
1288 |
-
|
1289 |
-
|
1290 |
-
|
1291 |
-
|
1292 |
-
|
1293 |
-
|
1294 |
-
|
1295 |
-
|
1296 |
-
|
1297 |
-
|
1298 |
-
|
1299 |
-
|
1300 |
-
|
1301 |
-
|
1302 |
-
|
1303 |
-
|
1304 |
-
|
1305 |
-
# 12. Define Training Schedule
|
1306 |
-
# Store some constants
|
1307 |
-
per_device_train_batch_size = int(training_args.per_device_train_batch_size)
|
1308 |
-
train_batch_size = per_device_train_batch_size * accelerator.num_processes
|
1309 |
-
gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
1310 |
-
per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
1311 |
-
|
1312 |
-
if not data_args.streaming and training_args.max_steps < 0:
|
1313 |
-
|
1314 |
-
|
1315 |
-
|
1316 |
-
|
1317 |
-
elif training_args.max_steps > 0: #since we use data streaming , this condition is satisfied
|
1318 |
-
|
1319 |
-
|
1320 |
-
|
1321 |
-
|
1322 |
-
|
1323 |
-
|
1324 |
-
|
1325 |
-
|
1326 |
-
|
1327 |
-
else:
|
1328 |
-
|
1329 |
-
|
1330 |
-
if training_args.eval_steps is None:
|
1331 |
-
|
1332 |
-
|
1333 |
-
|
1334 |
-
|
1335 |
-
else:
|
1336 |
-
|
1337 |
|
1338 |
-
print(f" num_epochs : {num_epochs}")
|
1339 |
-
print(f" steps_per_epoch = total_train_steps : {steps_per_epoch}")
|
1340 |
-
# 13. Define optimizer, LR scheduler, collator
|
1341 |
-
decay_parameters = get_parameter_names(
|
1342 |
-
|
1343 |
-
|
1344 |
-
|
1345 |
-
)
|
1346 |
-
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
1347 |
-
optimizer_grouped_parameters = [
|
1348 |
-
|
1349 |
-
|
1350 |
-
|
1351 |
-
|
1352 |
-
|
1353 |
-
|
1354 |
-
|
1355 |
-
|
1356 |
-
]
|
1357 |
-
optimizer = torch.optim.AdamW(
|
1358 |
-
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
)
|
1363 |
-
|
1364 |
-
# LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
|
1365 |
-
lr_scheduler = get_scheduler(
|
1366 |
-
|
1367 |
-
|
1368 |
-
|
1369 |
-
|
1370 |
-
)
|
1371 |
-
print()
|
1372 |
-
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
1373 |
-
|
1374 |
-
|
1375 |
-
|
1376 |
-
|
1377 |
-
|
1378 |
-
|
1379 |
-
)
|
1380 |
-
|
1381 |
-
# 14. Define generation arguments - we need to do this before we wrap the models in DDP
|
1382 |
-
# so that we can still access the configs
|
1383 |
-
num_beams = (
|
1384 |
-
|
1385 |
-
|
1386 |
-
|
1387 |
-
)
|
1388 |
-
|
1389 |
-
gen_kwargs = {
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
}
|
1394 |
-
if is_multilingual:
|
1395 |
-
|
1396 |
-
|
1397 |
-
|
1398 |
-
|
1399 |
-
|
1400 |
-
|
1401 |
-
|
1402 |
-
print(f" gen_kwargs : {gen_kwargs}")
|
1403 |
-
print(f" raw_datasets['eval']: {raw_datasets['eval']}")
|
1404 |
-
|
1405 |
-
#15. Prepare everything with accelerate
|
1406 |
-
student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
|
1407 |
-
|
1408 |
-
)
|
1409 |
|
1410 |
|
1411 |
|
1412 |
|
1413 |
-
def kl_divergence(target_distribution, log_predicted_distribution, labels):
|
1414 |
-
|
1415 |
-
|
1416 |
-
|
1417 |
-
|
1418 |
-
|
1419 |
-
|
1420 |
-
|
1421 |
-
|
1422 |
-
|
1423 |
-
|
1424 |
-
# Define gradient update step fn
|
1425 |
-
def train_step(
|
1426 |
-
|
1427 |
-
|
1428 |
-
):
|
1429 |
-
|
1430 |
-
|
1431 |
-
|
1432 |
-
|
1433 |
-
|
1434 |
-
|
1435 |
-
|
1436 |
-
|
1437 |
-
|
1438 |
-
|
1439 |
-
|
1440 |
-
|
1441 |
-
|
1442 |
|
1443 |
-
|
1444 |
-
|
1445 |
-
|
1446 |
-
|
1447 |
-
|
1448 |
-
|
1449 |
-
|
1450 |
-
|
1451 |
-
|
1452 |
-
|
1453 |
-
|
1454 |
-
|
1455 |
-
|
1456 |
-
|
1457 |
-
# Define eval fn
|
1458 |
-
def eval_step(batch):
|
1459 |
-
|
1460 |
-
|
1461 |
-
|
1462 |
-
|
1463 |
-
|
1464 |
-
|
1465 |
-
|
1466 |
-
|
1467 |
-
|
1468 |
-
|
1469 |
-
|
1470 |
-
|
1471 |
-
|
1472 |
-
|
1473 |
-
|
1474 |
-
|
1475 |
-
|
1476 |
-
|
1477 |
-
|
1478 |
-
|
1479 |
-
|
1480 |
-
|
1481 |
-
|
1482 |
-
|
1483 |
-
|
1484 |
-
def generate_step(batch):
|
1485 |
-
|
1486 |
-
|
1487 |
-
|
1488 |
-
|
1489 |
-
|
1490 |
-
logger.info("***** Running training *****")
|
1491 |
-
logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") #num examples that actually are trained
|
1492 |
-
if not data_args.streaming:
|
1493 |
-
|
1494 |
-
logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
|
1495 |
-
logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
|
1496 |
-
logger.info(
|
1497 |
-
|
1498 |
-
)
|
1499 |
-
logger.info(f" Total optimization steps = {total_train_steps}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1500 |
|
1501 |
-
#
|
1502 |
-
|
1503 |
-
|
1504 |
-
|
1505 |
-
|
1506 |
-
|
1507 |
-
|
1508 |
-
|
1509 |
-
|
1510 |
-
|
1511 |
-
|
1512 |
-
|
1513 |
-
|
1514 |
-
|
1515 |
-
|
1516 |
-
|
1517 |
-
|
1518 |
-
|
1519 |
-
|
1520 |
-
|
1521 |
-
|
1522 |
-
cur_step = int(match.group(1))
|
1523 |
-
epochs_trained = int(match.group(2))
|
1524 |
-
|
1525 |
-
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
1526 |
-
logger.info(f" Continuing training from epoch {epochs_trained}")
|
1527 |
-
logger.info(f" Continuing training from global step {cur_step}")
|
1528 |
-
|
1529 |
-
steps_trained_progress_bar.update(cur_step)
|
1530 |
-
|
1531 |
-
for epoch in range(0, epochs_trained):
|
1532 |
-
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1533 |
-
|
1534 |
-
if not data_args.streaming and training_args.max_steps < 0:
|
1535 |
-
# we know exactly the number of steps per epoch, so can skip through the required number of batches
|
1536 |
-
resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
|
1537 |
-
else:
|
1538 |
-
# Currently we don't know how many steps we've taken in the current epoch
|
1539 |
-
# So we just shuffle the dataset one extra time and start from a fresh epoch
|
1540 |
-
# This is "good enough" for our purposes but not fully correct
|
1541 |
-
resume_step = None
|
1542 |
-
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1543 |
-
else:
|
1544 |
-
resume_step = None
|
1545 |
-
print(f" raw_datasets['train'] : {raw_datasets['train']} ")
|
1546 |
-
print(f" raw_datasets['eval'] : {raw_datasets['eval']} ")
|
1547 |
|
1548 |
-
|
1549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1550 |
|
1551 |
-
#
|
1552 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1553 |
# vectorized_datasets[eval_split],
|
1554 |
# collate_fn=data_collator,
|
1555 |
# batch_size=per_device_eval_batch_size,
|
@@ -1559,198 +1662,96 @@ def main():
|
|
1559 |
# pin_memory=training_args.dataloader_pin_memory,
|
1560 |
# )
|
1561 |
|
1562 |
-
# for batch in validation_dataloader:
|
1563 |
-
# print(batch['input_features'].shape)
|
1564 |
-
|
1565 |
|
1566 |
-
|
1567 |
-
|
1568 |
-
|
1569 |
-
|
1570 |
-
|
1571 |
-
|
1572 |
-
|
1573 |
-
|
1574 |
-
|
1575 |
-
|
1576 |
-
|
1577 |
-
|
1578 |
-
|
1579 |
-
|
1580 |
-
|
1581 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1582 |
|
1583 |
-
|
1584 |
-
|
1585 |
-
|
1586 |
-
|
|
|
|
|
|
|
|
|
1587 |
|
1588 |
-
|
1589 |
-
|
1590 |
-
with accelerator.accumulate(student_model):
|
1591 |
-
#they are updated their parameters every batch
|
1592 |
-
loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
1593 |
-
#backward pass with loss
|
1594 |
-
accelerator.backward(loss)
|
1595 |
-
if accelerator.sync_gradients:
|
1596 |
-
accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
|
1597 |
-
#update after forward method
|
1598 |
-
optimizer.step()
|
1599 |
-
lr_scheduler.step()
|
1600 |
-
optimizer.zero_grad()
|
1601 |
-
|
1602 |
-
# Check if the accelerator has performed an optimization step behind the scenes
|
1603 |
-
if accelerator.sync_gradients:
|
1604 |
-
steps_trained_progress_bar.update(1)
|
1605 |
-
cur_step += 1
|
1606 |
-
|
1607 |
|
1608 |
-
|
1609 |
-
|
1610 |
-
steps_trained_progress_bar.write(
|
1611 |
-
f"Step... ({cur_step} / {total_train_steps} | Loss:"
|
1612 |
-
f" {train_metric['loss']}, Learning Rate:"
|
1613 |
-
f" {lr_scheduler.get_last_lr()[0]})"
|
1614 |
-
)
|
1615 |
-
log_metric(
|
1616 |
-
accelerator,
|
1617 |
-
metrics=train_metric,
|
1618 |
-
learning_rate=lr_scheduler.get_last_lr()[0],
|
1619 |
-
train_time=train_time + time.time() - train_start,
|
1620 |
-
step=cur_step,
|
1621 |
-
epoch=epoch,
|
1622 |
-
prefix="train",
|
1623 |
-
)
|
1624 |
|
1625 |
-
|
1626 |
-
|
1627 |
-
|
1628 |
-
|
1629 |
-
|
1630 |
-
|
1631 |
-
|
1632 |
-
|
1633 |
-
|
1634 |
-
|
1635 |
-
|
1636 |
-
|
1637 |
-
|
1638 |
-
|
1639 |
-
|
1640 |
-
|
1641 |
-
|
1642 |
-
|
1643 |
-
|
1644 |
-
student_model.eval()
|
1645 |
-
|
1646 |
-
# ======================== Evaluating ==============================
|
1647 |
-
|
1648 |
-
for eval_split in all_eval_splits:
|
1649 |
-
eval_metrics = []
|
1650 |
-
eval_preds = []
|
1651 |
-
eval_labels = []
|
1652 |
-
eval_start = time.time()
|
1653 |
-
|
1654 |
-
validation_dataloader = DataLoader(
|
1655 |
-
vectorized_datasets[eval_split],
|
1656 |
-
collate_fn=data_collator,
|
1657 |
-
batch_size=per_device_eval_batch_size,
|
1658 |
-
drop_last=False,
|
1659 |
-
num_workers=dataloader_num_workers,
|
1660 |
-
prefetch_factor=prefetch_factor,
|
1661 |
-
pin_memory=training_args.dataloader_pin_memory,
|
1662 |
-
)
|
1663 |
-
|
1664 |
-
|
1665 |
-
validation_dataloader = accelerator.prepare(validation_dataloader)
|
1666 |
-
|
1667 |
-
for batch in tqdm(
|
1668 |
-
validation_dataloader,
|
1669 |
-
desc=f"Evaluating {eval_split}...",
|
1670 |
-
position=2,
|
1671 |
-
disable=not accelerator.is_local_main_process,
|
1672 |
-
):
|
1673 |
-
print(f"type(batch) : {type(batch)}")
|
1674 |
-
# Model forward
|
1675 |
-
eval_metric = eval_step(batch)
|
1676 |
-
eval_metric = accelerator.gather_for_metrics(eval_metric)
|
1677 |
-
eval_metrics.append(eval_metric)
|
1678 |
-
|
1679 |
-
# generation
|
1680 |
-
if training_args.predict_with_generate:
|
1681 |
-
|
1682 |
-
generated_ids = generate_step(batch)
|
1683 |
-
# Gather all predictions and targets
|
1684 |
-
generated_ids, labels = accelerator.gather_for_metrics(
|
1685 |
-
(generated_ids, batch["labels"])
|
1686 |
-
)
|
1687 |
-
eval_preds.extend(generated_ids)
|
1688 |
-
eval_labels.extend(labels)
|
1689 |
-
|
1690 |
-
eval_time = time.time() - eval_start
|
1691 |
-
# normalize eval metrics
|
1692 |
-
eval_metrics = {
|
1693 |
-
key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
|
1694 |
-
}
|
1695 |
-
|
1696 |
-
# compute WER metric
|
1697 |
-
wer_desc = ""
|
1698 |
-
if training_args.predict_with_generate:
|
1699 |
-
wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
|
1700 |
-
eval_preds, eval_labels
|
1701 |
-
)
|
1702 |
-
eval_metrics.update(wer_metric)
|
1703 |
-
wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
|
1704 |
-
log_pred(
|
1705 |
-
accelerator,
|
1706 |
-
pred_str,
|
1707 |
-
label_str,
|
1708 |
-
norm_pred_str,
|
1709 |
-
norm_label_str,
|
1710 |
-
step=cur_step,
|
1711 |
-
prefix=eval_split,
|
1712 |
-
)
|
1713 |
-
|
1714 |
-
# Print metrics and update progress bar
|
1715 |
-
steps_trained_progress_bar.write(
|
1716 |
-
f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
|
1717 |
-
f" {wer_desc})"
|
1718 |
-
)
|
1719 |
-
|
1720 |
-
log_metric(
|
1721 |
-
accelerator,
|
1722 |
-
metrics=eval_metrics,
|
1723 |
-
train_time=eval_time,
|
1724 |
-
step=cur_step,
|
1725 |
-
epoch=epoch,
|
1726 |
-
prefix=eval_split,
|
1727 |
-
)
|
1728 |
-
|
1729 |
-
# flush the train metrics
|
1730 |
-
train_start = time.time()
|
1731 |
-
|
1732 |
-
# break condition
|
1733 |
-
if cur_step == total_train_steps:
|
1734 |
-
|
1735 |
-
# un-wrap student model for save
|
1736 |
-
student_model = accelerator.unwrap_model(student_model)
|
1737 |
-
student_model.save_pretrained(training_args.output_dir)
|
1738 |
-
|
1739 |
-
if training_args.push_to_hub:
|
1740 |
-
upload_folder(
|
1741 |
-
folder_path=training_args.output_dir,
|
1742 |
-
repo_id=repo_name,
|
1743 |
-
repo_type="model",
|
1744 |
-
commit_message=f"Saving final weights of step {cur_step}",
|
1745 |
-
)
|
1746 |
-
|
1747 |
-
continue_training = False
|
1748 |
-
break
|
1749 |
-
|
1750 |
-
if not continue_training:
|
1751 |
-
break
|
1752 |
-
|
1753 |
-
accelerator.end_training()
|
1754 |
|
1755 |
|
1756 |
if __name__ == "__main__":
|
|
|
1219 |
if training_args.do_eval:
|
1220 |
for eval_split in all_eval_splits:
|
1221 |
raw_datasets_eval_features = list(raw_datasets[eval_split].features.keys())
|
1222 |
+
map_fn_eval = partial( #partial is predefined argument for a function in this case is map function with prepare_eval_dataset function as a predefined argument
|
1223 |
raw_datasets[eval_split].map, function=prepare_eval_dataset, remove_columns=raw_datasets_eval_features
|
1224 |
)
|
1225 |
with accelerator.main_process_first():
|
|
|
1229 |
else map_fn_eval()
|
1230 |
)
|
1231 |
|
1232 |
+
print(f' vectorized_datasets["train"] : {vectorized_datasets["train"]}')
|
1233 |
+
|
1234 |
+
# # 10.5: Filter training data with inputs longer than `max_input_length`
|
1235 |
+
# def is_audio_in_length_range(length):
|
1236 |
+
# return min_input_length < length < max_input_length
|
1237 |
+
|
1238 |
+
# filter_by_audio_fn = partial(
|
1239 |
+
# vectorized_datasets.filter, function=is_audio_in_length_range, input_columns=["input_length"]
|
1240 |
+
# )
|
1241 |
+
# with accelerator.main_process_first():
|
1242 |
+
# vectorized_datasets = (
|
1243 |
+
# filter_by_audio_fn(num_proc=num_workers, desc="filtering train dataset by audio length")
|
1244 |
+
# if not data_args.streaming
|
1245 |
+
# else filter_by_audio_fn()
|
1246 |
+
# )
|
1247 |
+
|
1248 |
+
# # 10.6: Filter training data with labels longer than `max_label_length`
|
1249 |
+
# def is_labels_in_length_range(labels):
|
1250 |
+
# return 0 < len(labels) <= max_label_length
|
1251 |
+
|
1252 |
+
# filter_by_labels_fn = partial(
|
1253 |
+
# vectorized_datasets.filter, function=is_labels_in_length_range, input_columns=["labels"]
|
1254 |
+
# )
|
1255 |
+
# with accelerator.main_process_first():
|
1256 |
+
# vectorized_datasets = (
|
1257 |
+
# filter_by_labels_fn(num_proc=num_workers, desc="filtering train dataset")
|
1258 |
+
# if not data_args.streaming
|
1259 |
+
# else filter_by_labels_fn()
|
1260 |
+
# )
|
1261 |
+
|
1262 |
+
# # Pre-processing complete!
|
1263 |
+
# # For large datasets it is advised to run the preprocessing on a
|
1264 |
+
# # single machine first with `--preprocessing_only` since there will mostly likely
|
1265 |
+
# # be a timeout when running the script in distributed mode.
|
1266 |
+
# # In a second step, `--preprocessing_only` can then be set to `False` to load the
|
1267 |
+
# # cached dataset
|
1268 |
+
# if data_args.preprocessing_only:
|
1269 |
+
# if data_args.streaming:
|
1270 |
+
# raise ValueError(
|
1271 |
+
# "When using streaming mode, dataset pre-processing is performed on the fly, hence there is no notion"
|
1272 |
+
# "of a cached pre-processed dataset. Remove the argument `--preprocessing_only` to run pre-processing "
|
1273 |
+
# "on the fly with streaming mode."
|
1274 |
+
# )
|
1275 |
+
# cache = {k: v.cache_files for k, v in vectorized_datasets.items()}
|
1276 |
+
# logger.info(f"Data preprocessing finished. Files cached at {cache}.")
|
1277 |
+
# return
|
1278 |
+
|
1279 |
+
# # 11. Define Evaluation Metrics
|
1280 |
+
# def compute_metrics(preds, labels):
|
1281 |
+
# # replace padded labels by the padding token
|
1282 |
|
1283 |
+
# for idx in range(len(labels)):
|
1284 |
+
# labels[idx][labels[idx] == -100] = tokenizer.pad_token_id
|
1285 |
+
|
1286 |
+
# pred_str = tokenizer.batch_decode(preds, skip_special_tokens=True, decode_with_timestamps=return_timestamps)
|
1287 |
+
# print(f" pred_str : {pred_str}")
|
1288 |
+
# # we do not want to group tokens when computing the metrics
|
1289 |
+
|
1290 |
+
# label_str = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
1291 |
+
# wer_ortho = 100 * metric.compute(predictions=pred_str, references=label_str)
|
1292 |
+
# print(f" label_str : {label_str}")
|
1293 |
+
# # normalize everything and re-compute the WER
|
1294 |
+
# norm_pred_str = [normalizer(pred) for pred in pred_str]
|
1295 |
+
# norm_label_str = [normalizer(label) for label in label_str]
|
1296 |
+
# # for logging, we need the pred/labels to match the norm_pred/norm_labels, so discard any filtered samples here
|
1297 |
+
# pred_str = [pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
|
1298 |
+
# label_str = [label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
|
1299 |
+
# # filtering step to only evaluate the samples that correspond to non-zero normalized references:
|
1300 |
+
# norm_pred_str = [norm_pred_str[i] for i in range(len(norm_pred_str)) if len(norm_label_str[i]) > 0]
|
1301 |
+
# norm_label_str = [norm_label_str[i] for i in range(len(norm_label_str)) if len(norm_label_str[i]) > 0]
|
1302 |
+
|
1303 |
+
# wer = 100 * metric.compute(predictions=norm_pred_str, references=norm_label_str)
|
1304 |
+
# return {"wer": wer, "wer_ortho": wer_ortho}, pred_str, label_str, norm_pred_str, norm_label_str
|
1305 |
+
|
1306 |
+
# # 12. Define Training Schedule
|
1307 |
+
# # Store some constants
|
1308 |
+
# per_device_train_batch_size = int(training_args.per_device_train_batch_size)
|
1309 |
+
# train_batch_size = per_device_train_batch_size * accelerator.num_processes
|
1310 |
+
# gradient_accumulation_steps = int(training_args.gradient_accumulation_steps)
|
1311 |
+
# per_device_eval_batch_size = int(training_args.per_device_eval_batch_size)
|
1312 |
+
|
1313 |
+
# if not data_args.streaming and training_args.max_steps < 0:
|
1314 |
+
# num_epochs = int(training_args.num_train_epochs)
|
1315 |
+
# steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1316 |
+
# total_train_steps = steps_per_epoch * num_epochs
|
1317 |
+
|
1318 |
+
# elif training_args.max_steps > 0: #since we use data streaming , this condition is satisfied
|
1319 |
+
# logger.info("max_steps is given, it will override any value given in num_train_epochs")
|
1320 |
+
# total_train_steps = int(training_args.max_steps)
|
1321 |
+
# if not data_args.streaming:
|
1322 |
+
# steps_per_epoch = len(vectorized_datasets["train"]) // (train_batch_size * gradient_accumulation_steps)
|
1323 |
+
# num_epochs = int(np.ceil(total_train_steps / steps_per_epoch))
|
1324 |
+
# else:
|
1325 |
+
# # Setting a very large number of epochs so we go as many times as necessary over the iterator.
|
1326 |
+
# num_epochs = sys.maxsize #num_epochs as much as possible
|
1327 |
+
# steps_per_epoch = total_train_steps
|
1328 |
+
# else:
|
1329 |
+
# raise ValueError("max_steps must be specified when training with a streaming (iterable) dataset")
|
1330 |
+
|
1331 |
+
# if training_args.eval_steps is None:
|
1332 |
+
# logger.info(
|
1333 |
+
# f"eval_steps is not set, evaluating at the end of {'each epoch' if not data_args.streaming else 'training'}"
|
1334 |
+
# )
|
1335 |
+
# eval_steps = steps_per_epoch
|
1336 |
+
# else:
|
1337 |
+
# eval_steps = training_args.eval_steps
|
1338 |
|
1339 |
+
# print(f" num_epochs : {num_epochs}")
|
1340 |
+
# print(f" steps_per_epoch = total_train_steps : {steps_per_epoch}")
|
1341 |
+
# # 13. Define optimizer, LR scheduler, collator
|
1342 |
+
# decay_parameters = get_parameter_names(
|
1343 |
+
# student_model,
|
1344 |
+
# [nn.LayerNorm],
|
1345 |
+
# forbidden_module=[student_model.model.encoder] if training_args.freeze_encoder else None,
|
1346 |
+
# )
|
1347 |
+
# decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
1348 |
+
# optimizer_grouped_parameters = [
|
1349 |
+
# {
|
1350 |
+
# "params": [param for name, param in student_model.named_parameters() if name in decay_parameters],
|
1351 |
+
# "weight_decay": training_args.weight_decay,
|
1352 |
+
# },
|
1353 |
+
# {
|
1354 |
+
# "params": [param for name, param in student_model.named_parameters() if name not in decay_parameters],
|
1355 |
+
# "weight_decay": 0.0,
|
1356 |
+
# },
|
1357 |
+
# ]
|
1358 |
+
# optimizer = torch.optim.AdamW(
|
1359 |
+
# params=optimizer_grouped_parameters,
|
1360 |
+
# lr=training_args.learning_rate,
|
1361 |
+
# betas=(training_args.adam_beta1, training_args.adam_beta2),
|
1362 |
+
# eps=training_args.adam_epsilon,
|
1363 |
+
# )
|
1364 |
+
|
1365 |
+
# # LR scheduler gets stepped by `num_processes` each time -> account for this in warmup / total steps
|
1366 |
+
# lr_scheduler = get_scheduler(
|
1367 |
+
# name=training_args.lr_scheduler_type,
|
1368 |
+
# optimizer=optimizer,
|
1369 |
+
# num_warmup_steps=training_args.warmup_steps * accelerator.num_processes,
|
1370 |
+
# num_training_steps=total_train_steps * accelerator.num_processes,
|
1371 |
+
# )
|
1372 |
+
# print()
|
1373 |
+
# data_collator = DataCollatorSpeechSeq2SeqWithPadding(
|
1374 |
+
# processor=processor,
|
1375 |
+
# decoder_start_token_id=decoder_start_token_id,
|
1376 |
+
# decoder_prev_token_id=decoder_prev_token_id,
|
1377 |
+
# input_padding="longest",
|
1378 |
+
# target_padding="max_length",
|
1379 |
+
# max_target_length=max_label_length,
|
1380 |
+
# )
|
1381 |
+
|
1382 |
+
# # 14. Define generation arguments - we need to do this before we wrap the models in DDP
|
1383 |
+
# # so that we can still access the configs
|
1384 |
+
# num_beams = (
|
1385 |
+
# training_args.generation_num_beams
|
1386 |
+
# if training_args.generation_num_beams is not None
|
1387 |
+
# else getattr(student_model.generation_config, "num_beams", 1)
|
1388 |
+
# )
|
1389 |
+
|
1390 |
+
# gen_kwargs = {
|
1391 |
+
# "max_length": max_label_length,
|
1392 |
+
# "num_beams": num_beams,
|
1393 |
+
# "return_timestamps": return_timestamps,
|
1394 |
+
# }
|
1395 |
+
# if is_multilingual:
|
1396 |
+
# # forcing the language and task tokens helps multilingual models in their generations
|
1397 |
+
# gen_kwargs.update(
|
1398 |
+
# {
|
1399 |
+
# "language": data_args.language,
|
1400 |
+
# "task": data_args.task,
|
1401 |
+
# }
|
1402 |
+
# )
|
1403 |
+
# print(f" gen_kwargs : {gen_kwargs}")
|
1404 |
+
# print(f" raw_datasets['eval']: {raw_datasets['eval']}")
|
1405 |
+
|
1406 |
+
# #15. Prepare everything with accelerate
|
1407 |
+
# student_model, teacher_model, optimizer, lr_scheduler = accelerator.prepare(
|
1408 |
+
# student_model, teacher_model, optimizer, lr_scheduler
|
1409 |
+
# )
|
1410 |
|
1411 |
|
1412 |
|
1413 |
|
1414 |
+
# def kl_divergence(target_distribution, log_predicted_distribution, labels):
|
1415 |
+
# kl_loss = nn.KLDivLoss(reduction="none")
|
1416 |
+
# divergence = kl_loss(log_predicted_distribution, target_distribution)
|
1417 |
+
# # ignore padded tokens from divergence, i.e. where labels are not set to -100
|
1418 |
+
# padding_mask = labels >= 0
|
1419 |
+
# padding_mask = padding_mask.unsqueeze(-1)
|
1420 |
+
# divergence = divergence * padding_mask
|
1421 |
+
# # take the average over the mini-batch
|
1422 |
+
# divergence = divergence.sum() / padding_mask.sum()
|
1423 |
+
# return divergence
|
1424 |
+
|
1425 |
+
# # Define gradient update step fn
|
1426 |
+
# def train_step(
|
1427 |
+
# batch,
|
1428 |
+
# temperature=2.0,
|
1429 |
+
# ):
|
1430 |
+
# student_model.train()
|
1431 |
+
# teacher_model.eval()
|
1432 |
+
|
1433 |
+
# student_outputs = student_model(**batch) # __call__ is overidden for forward function , note : student_model and teacher model both are whisperforconditionalgeneration object
|
1434 |
+
# with torch.no_grad():
|
1435 |
+
# if share_hidden_states:
|
1436 |
+
# # if the student and teacher share the same frozen encoder then we don't have to recompute the
|
1437 |
+
# # encoder hidden-states for the teacher model, we can just re-use from the student
|
1438 |
+
# encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
|
1439 |
+
# teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
|
1440 |
+
# else:
|
1441 |
+
# # do the full forward pass for the teacher model (encoder + decoder)
|
1442 |
+
# teacher_outputs = teacher_model(**batch)
|
1443 |
|
1444 |
+
# # CE (data) loss
|
1445 |
+
# ce_loss = student_outputs.loss
|
1446 |
+
# # rescale distribution by temperature to ensure gradients scale correctly
|
1447 |
+
# teacher_distribution = nn.functional.softmax(teacher_outputs.logits / temperature, dim=-1)
|
1448 |
+
# # log softmax of student predictions for numerical stability
|
1449 |
+
# student_distribution = nn.functional.log_softmax(student_outputs.logits / temperature, dim=-1)
|
1450 |
+
# # KL-divergence loss (scaled by temperature)
|
1451 |
+
# kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"]) * temperature**2
|
1452 |
+
|
1453 |
+
# # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1454 |
+
# loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1455 |
+
# metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1456 |
+
# return loss, metrics
|
1457 |
+
|
1458 |
+
# # Define eval fn
|
1459 |
+
# def eval_step(batch):
|
1460 |
+
# student_model.eval()
|
1461 |
+
# teacher_model.eval()
|
1462 |
+
|
1463 |
+
# with torch.no_grad():
|
1464 |
+
# student_outputs = student_model(**batch)
|
1465 |
+
# if share_hidden_states:
|
1466 |
+
# encoder_outputs = BaseModelOutput(student_outputs.encoder_last_hidden_state.to(dtype=teacher_dtype))
|
1467 |
+
# teacher_outputs = teacher_model(encoder_outputs=encoder_outputs, labels=batch["labels"])
|
1468 |
+
# else:
|
1469 |
+
# teacher_outputs = teacher_model(**batch)
|
1470 |
+
|
1471 |
+
# # CE (data) loss
|
1472 |
+
# ce_loss = student_outputs.loss
|
1473 |
+
|
1474 |
+
# # log softmax / softmax for numerical stability
|
1475 |
+
# student_distribution = nn.functional.log_softmax(student_outputs.logits, dim=-1)
|
1476 |
+
# teacher_distribution = nn.functional.softmax(teacher_outputs.logits, dim=-1)
|
1477 |
+
# # temperature is always 1 for eval
|
1478 |
+
# kl_loss = kl_divergence(teacher_distribution, student_distribution, batch["labels"])
|
1479 |
+
|
1480 |
+
# # use Distil-Whisper formulation (fix weight of CE loss and tune KL weight)
|
1481 |
+
# loss = 0.8 * ce_loss + training_args.kl_weight * kl_loss
|
1482 |
+
# metrics = {"loss": loss, "ce_loss": ce_loss, "kl_loss": kl_loss}
|
1483 |
+
# return metrics
|
1484 |
+
|
1485 |
+
# def generate_step(batch):
|
1486 |
+
# student_model.eval()
|
1487 |
+
# output_ids = accelerator.unwrap_model(student_model).generate(batch["input_features"], **gen_kwargs)
|
1488 |
+
# output_ids = accelerator.pad_across_processes(output_ids, dim=1, pad_index=tokenizer.pad_token_id)
|
1489 |
+
# return output_ids
|
1490 |
+
|
1491 |
+
# logger.info("***** Running training *****")
|
1492 |
+
# logger.info(f" Num examples = {total_train_steps * train_batch_size * gradient_accumulation_steps}") #num examples that actually are trained
|
1493 |
+
# if not data_args.streaming:
|
1494 |
+
# logger.info(f" Num epochs = {num_epochs}")
|
1495 |
+
# logger.info(" Instantaneous batch size per device =" f" {training_args.per_device_train_batch_size}")
|
1496 |
+
# logger.info(" Gradient accumulation steps =" f" {gradient_accumulation_steps}")
|
1497 |
+
# logger.info(
|
1498 |
+
# f" Total train batch size (w. parallel & distributed) = {train_batch_size * gradient_accumulation_steps}"
|
1499 |
+
# )
|
1500 |
+
# logger.info(f" Total optimization steps = {total_train_steps}")
|
1501 |
+
|
1502 |
+
# # ======================== Training ================================
|
1503 |
+
# train_time = 0
|
1504 |
+
# train_start = time.time()
|
1505 |
+
# steps_trained_progress_bar = tqdm(
|
1506 |
+
# range(total_train_steps), desc="Train steps ... ", position=0, disable=not accelerator.is_local_main_process
|
1507 |
+
# )
|
1508 |
+
# continue_training = True
|
1509 |
+
# epochs_trained = 0
|
1510 |
+
# cur_step = 0
|
1511 |
+
|
1512 |
+
# checkpoint = None
|
1513 |
+
# if training_args.resume_from_checkpoint is not None:
|
1514 |
+
# checkpoint = training_args.resume_from_checkpoint
|
1515 |
+
# elif last_checkpoint is not None:
|
1516 |
+
# checkpoint = last_checkpoint
|
1517 |
+
|
1518 |
+
# if checkpoint is not None:
|
1519 |
+
# accelerator.load_state(checkpoint)
|
1520 |
+
# # Find num steps and epoch from saved state string pattern
|
1521 |
+
# pattern = r"checkpoint-(\d+)-epoch-(\d+)"
|
1522 |
+
# match = re.search(pattern, checkpoint)
|
1523 |
+
# cur_step = int(match.group(1))
|
1524 |
+
# epochs_trained = int(match.group(2))
|
1525 |
+
|
1526 |
+
# logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
1527 |
+
# logger.info(f" Continuing training from epoch {epochs_trained}")
|
1528 |
+
# logger.info(f" Continuing training from global step {cur_step}")
|
1529 |
+
|
1530 |
+
# steps_trained_progress_bar.update(cur_step)
|
1531 |
+
|
1532 |
+
# for epoch in range(0, epochs_trained):
|
1533 |
+
# vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1534 |
+
|
1535 |
+
# if not data_args.streaming and training_args.max_steps < 0:
|
1536 |
+
# # we know exactly the number of steps per epoch, so can skip through the required number of batches
|
1537 |
+
# resume_step = (cur_step - epochs_trained * steps_per_epoch) * gradient_accumulation_steps
|
1538 |
+
# else:
|
1539 |
+
# # Currently we don't know how many steps we've taken in the current epoch
|
1540 |
+
# # So we just shuffle the dataset one extra time and start from a fresh epoch
|
1541 |
+
# # This is "good enough" for our purposes but not fully correct
|
1542 |
+
# resume_step = None
|
1543 |
+
# vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1544 |
+
# else:
|
1545 |
+
# resume_step = None
|
1546 |
+
# print(f" raw_datasets['train'] : {raw_datasets['train']} ")
|
1547 |
+
# print(f" raw_datasets['eval'] : {raw_datasets['eval']} ")
|
1548 |
+
|
1549 |
+
# print(f" vectorized_datasets['eval'] : {vectorized_datasets['eval']}")
|
1550 |
+
# print(f" vectorized_datasets['train'] : {vectorized_datasets['train']}")
|
1551 |
+
|
1552 |
+
# #see example of validation dataloader
|
1553 |
+
# # validation_dataloader = DataLoader(
|
1554 |
+
# # vectorized_datasets[eval_split],
|
1555 |
+
# # collate_fn=data_collator,
|
1556 |
+
# # batch_size=per_device_eval_batch_size,
|
1557 |
+
# # drop_last=False,
|
1558 |
+
# # num_workers=dataloader_num_workers,
|
1559 |
+
# # prefetch_factor=prefetch_factor,
|
1560 |
+
# # pin_memory=training_args.dataloader_pin_memory,
|
1561 |
+
# # )
|
1562 |
+
|
1563 |
+
# # for batch in validation_dataloader:
|
1564 |
+
# # print(batch['input_features'].shape)
|
1565 |
+
|
1566 |
|
1567 |
+
# print(f" student_model : {type(student_model)}")
|
1568 |
+
|
1569 |
+
|
1570 |
+
# for epoch in range(epochs_trained, num_epochs):
|
1571 |
+
# vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(training_args.seed)
|
1572 |
+
# train_dataloader = DataLoader(
|
1573 |
+
# vectorized_datasets["train"],
|
1574 |
+
# collate_fn=data_collator,
|
1575 |
+
# batch_size=per_device_train_batch_size,
|
1576 |
+
# num_workers=dataloader_num_workers,
|
1577 |
+
# prefetch_factor=prefetch_factor,
|
1578 |
+
# pin_memory=training_args.dataloader_pin_memory,
|
1579 |
+
# )
|
1580 |
+
# train_dataloader = accelerator.prepare(train_dataloader)
|
1581 |
+
# if hasattr(train_dataloader, "dataset") and isinstance(train_dataloader.dataset, IterableDataset):
|
1582 |
+
# train_dataloader.dataset.set_epoch(epoch)
|
1583 |
+
|
1584 |
+
# if resume_step is not None:
|
1585 |
+
# # Skip the first N batches in the dataloader when resuming from a checkpoint
|
1586 |
+
# train_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
|
1587 |
+
# resume_step = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1588 |
|
1589 |
+
|
1590 |
+
# for batch in train_dataloader:
|
1591 |
+
# with accelerator.accumulate(student_model):
|
1592 |
+
# #they are updated their parameters every batch
|
1593 |
+
# loss, train_metric = train_step(batch, temperature=training_args.temperature)
|
1594 |
+
# #backward pass with loss
|
1595 |
+
# accelerator.backward(loss)
|
1596 |
+
# if accelerator.sync_gradients:
|
1597 |
+
# accelerator.clip_grad_norm_(student_model.parameters(), training_args.max_grad_norm)
|
1598 |
+
# #update after forward method
|
1599 |
+
# optimizer.step()
|
1600 |
+
# lr_scheduler.step()
|
1601 |
+
# optimizer.zero_grad()
|
1602 |
+
|
1603 |
+
# # Check if the accelerator has performed an optimization step behind the scenes
|
1604 |
+
# if accelerator.sync_gradients:
|
1605 |
+
# steps_trained_progress_bar.update(1)
|
1606 |
+
# cur_step += 1
|
1607 |
+
|
1608 |
|
1609 |
+
# #logging timing
|
1610 |
+
# if cur_step % training_args.logging_steps == 0:
|
1611 |
+
# steps_trained_progress_bar.write(
|
1612 |
+
# f"Step... ({cur_step} / {total_train_steps} | Loss:"
|
1613 |
+
# f" {train_metric['loss']}, Learning Rate:"
|
1614 |
+
# f" {lr_scheduler.get_last_lr()[0]})"
|
1615 |
+
# )
|
1616 |
+
# log_metric(
|
1617 |
+
# accelerator,
|
1618 |
+
# metrics=train_metric,
|
1619 |
+
# learning_rate=lr_scheduler.get_last_lr()[0],
|
1620 |
+
# train_time=train_time + time.time() - train_start,
|
1621 |
+
# step=cur_step,
|
1622 |
+
# epoch=epoch,
|
1623 |
+
# prefix="train",
|
1624 |
+
# )
|
1625 |
+
|
1626 |
+
# # save checkpoint and weights after each save_steps and at the end of training
|
1627 |
+
# if (cur_step % training_args.save_steps == 0) or cur_step == total_train_steps:
|
1628 |
+
# intermediate_dir = os.path.join(training_args.output_dir, f"checkpoint-{cur_step}-epoch-{epoch}")
|
1629 |
+
# accelerator.save_state(output_dir=intermediate_dir)
|
1630 |
+
# accelerator.wait_for_everyone()
|
1631 |
+
# if accelerator.is_main_process:
|
1632 |
+
# rotate_checkpoints(training_args.save_total_limit, output_dir=training_args.output_dir)
|
1633 |
+
|
1634 |
+
# if training_args.push_to_hub:
|
1635 |
+
# upload_folder(
|
1636 |
+
# folder_path=training_args.output_dir,
|
1637 |
+
# repo_id=repo_name,
|
1638 |
+
# repo_type="model",
|
1639 |
+
# commit_message=f"Saving train state of step {cur_step}",
|
1640 |
+
# )
|
1641 |
+
|
1642 |
+
# if training_args.do_eval and (cur_step % eval_steps == 0 or cur_step == total_train_steps):
|
1643 |
+
# print("evaluating dsakdlaskdfl;skl;afksdl;fdasl;fkdl;askfl;asdkfldskfl;das")
|
1644 |
+
# train_time += time.time() - train_start
|
1645 |
+
# student_model.eval()
|
1646 |
+
|
1647 |
+
# # ======================== Evaluating ==============================
|
1648 |
+
|
1649 |
+
# for eval_split in all_eval_splits:
|
1650 |
+
# eval_metrics = []
|
1651 |
+
# eval_preds = []
|
1652 |
+
# eval_labels = []
|
1653 |
+
# eval_start = time.time()
|
1654 |
+
|
1655 |
+
# validation_dataloader = DataLoader(
|
1656 |
# vectorized_datasets[eval_split],
|
1657 |
# collate_fn=data_collator,
|
1658 |
# batch_size=per_device_eval_batch_size,
|
|
|
1662 |
# pin_memory=training_args.dataloader_pin_memory,
|
1663 |
# )
|
1664 |
|
|
|
|
|
|
|
1665 |
|
1666 |
+
# validation_dataloader = accelerator.prepare(validation_dataloader)
|
1667 |
+
|
1668 |
+
# for batch in tqdm(
|
1669 |
+
# validation_dataloader,
|
1670 |
+
# desc=f"Evaluating {eval_split}...",
|
1671 |
+
# position=2,
|
1672 |
+
# disable=not accelerator.is_local_main_process,
|
1673 |
+
# ):
|
1674 |
+
# print(f"type(batch) : {type(batch)}")
|
1675 |
+
# # Model forward
|
1676 |
+
# eval_metric = eval_step(batch)
|
1677 |
+
# eval_metric = accelerator.gather_for_metrics(eval_metric)
|
1678 |
+
# eval_metrics.append(eval_metric)
|
1679 |
+
|
1680 |
+
# # generation
|
1681 |
+
# if training_args.predict_with_generate:
|
1682 |
+
|
1683 |
+
# generated_ids = generate_step(batch)
|
1684 |
+
# # Gather all predictions and targets
|
1685 |
+
# generated_ids, labels = accelerator.gather_for_metrics(
|
1686 |
+
# (generated_ids, batch["labels"])
|
1687 |
+
# )
|
1688 |
+
# eval_preds.extend(generated_ids)
|
1689 |
+
# eval_labels.extend(labels)
|
1690 |
+
|
1691 |
+
# eval_time = time.time() - eval_start
|
1692 |
+
# # normalize eval metrics
|
1693 |
+
# eval_metrics = {
|
1694 |
+
# key: torch.mean(torch.stack([d[key] for d in eval_metrics])) for key in eval_metrics[0]
|
1695 |
+
# }
|
1696 |
+
|
1697 |
+
# # compute WER metric
|
1698 |
+
# wer_desc = ""
|
1699 |
+
# if training_args.predict_with_generate:
|
1700 |
+
# wer_metric, pred_str, label_str, norm_pred_str, norm_label_str = compute_metrics(
|
1701 |
+
# eval_preds, eval_labels
|
1702 |
+
# )
|
1703 |
+
# eval_metrics.update(wer_metric)
|
1704 |
+
# wer_desc = " ".join([f"Eval {key}: {value} |" for key, value in wer_metric.items()])
|
1705 |
+
# log_pred(
|
1706 |
+
# accelerator,
|
1707 |
+
# pred_str,
|
1708 |
+
# label_str,
|
1709 |
+
# norm_pred_str,
|
1710 |
+
# norm_label_str,
|
1711 |
+
# step=cur_step,
|
1712 |
+
# prefix=eval_split,
|
1713 |
+
# )
|
1714 |
+
|
1715 |
+
# # Print metrics and update progress bar
|
1716 |
+
# steps_trained_progress_bar.write(
|
1717 |
+
# f"Eval results for step ({cur_step} / {total_train_steps} | Eval Loss: {eval_metrics['loss']} |"
|
1718 |
+
# f" {wer_desc})"
|
1719 |
+
# )
|
1720 |
|
1721 |
+
# log_metric(
|
1722 |
+
# accelerator,
|
1723 |
+
# metrics=eval_metrics,
|
1724 |
+
# train_time=eval_time,
|
1725 |
+
# step=cur_step,
|
1726 |
+
# epoch=epoch,
|
1727 |
+
# prefix=eval_split,
|
1728 |
+
# )
|
1729 |
|
1730 |
+
# # flush the train metrics
|
1731 |
+
# train_start = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1732 |
|
1733 |
+
# # break condition
|
1734 |
+
# if cur_step == total_train_steps:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1735 |
|
1736 |
+
# # un-wrap student model for save
|
1737 |
+
# student_model = accelerator.unwrap_model(student_model)
|
1738 |
+
# student_model.save_pretrained(training_args.output_dir)
|
1739 |
+
|
1740 |
+
# if training_args.push_to_hub:
|
1741 |
+
# upload_folder(
|
1742 |
+
# folder_path=training_args.output_dir,
|
1743 |
+
# repo_id=repo_name,
|
1744 |
+
# repo_type="model",
|
1745 |
+
# commit_message=f"Saving final weights of step {cur_step}",
|
1746 |
+
# )
|
1747 |
+
|
1748 |
+
# continue_training = False
|
1749 |
+
# break
|
1750 |
+
|
1751 |
+
# if not continue_training:
|
1752 |
+
# break
|
1753 |
+
|
1754 |
+
# accelerator.end_training()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1755 |
|
1756 |
|
1757 |
if __name__ == "__main__":
|