2024/01/18 13:41:34 - mmengine - INFO - ------------------------------------------------------------ System environment: sys.platform: linux Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] CUDA available: True numpy_random_seed: 1142582054 GPU 0,1,2,3,4,5,6: NVIDIA A100-SXM4-80GB CUDA_HOME: /usr/local/cuda-11.7 NVCC: Cuda compilation tools, release 11.7, V11.7.64 GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.3) 9.4.0 PyTorch: 1.13.0 PyTorch compiling details: PyTorch built with: - GCC 9.3 - C++ Version: 201402 - Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 11.7 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.5 - Magma 2.6.1 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, TorchVision: 0.14.0 OpenCV: 4.8.1 MMEngine: 0.10.1 Runtime environment: cudnn_benchmark: True mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 1142582054 Distributed launcher: pytorch Distributed training: True GPU number: 4 ------------------------------------------------------------ 2024/01/18 13:41:36 - mmengine - INFO - Config: backbone_norm_cfg = dict(requires_grad=True, type='LN') checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth' crop_size = ( 640, 640, ) data_preprocessor = dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 640, 640, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor') data_root = 'data/ade/ADEChallengeData2016' dataset_type = 'ADE20KDataset' default_hooks = dict( checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict(type='SegVisualizationHook')) default_scope = 'mmseg' env_cfg = dict( cudnn_benchmark=True, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, ] launcher = 'pytorch' load_from = '/home/LiuYue/Workspace3/ckpts/segmentation/work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small/iter_160000.pth' log_level = 'INFO' log_processor = dict(by_epoch=False) model = dict( module=dict( auxiliary_head=dict( align_corners=False, channels=256, concat_input=False, dropout_ratio=0.1, in_channels=384, in_index=2, loss_decode=dict( loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, num_convs=1, type='FCNHead'), backbone=dict( act_cfg=dict(type='GELU'), attn_drop_rate=0.0, depths=( 2, 2, 27, 2, ), dims=96, drop_path_rate=0.3, drop_rate=0.0, embed_dims=96, init_cfg=dict( checkpoint= 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth', type='Pretrained'), mlp_ratio=4, norm_cfg=dict(requires_grad=True, type='LN'), num_heads=[ 3, 6, 12, 24, ], out_indices=( 0, 1, 2, 3, ), patch_norm=True, patch_size=4, pretrain_img_size=224, pretrained='../../ckpts/vssmsmall/ckpt_epoch_238.pth', qk_scale=None, qkv_bias=True, strides=( 4, 2, 2, 2, ), type='MMSEG_VSSM', use_abs_pos_embed=False, window_size=7), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 640, 640, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor'), decode_head=dict( align_corners=False, channels=512, dropout_ratio=0.1, in_channels=[ 96, 192, 384, 768, ], in_index=[ 0, 1, 2, 3, ], loss_decode=dict( loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, pool_scales=( 1, 2, 3, 6, ), type='UPerHead'), pretrained=None, test_cfg=dict(mode='whole'), train_cfg=dict(), type='EncoderDecoder'), type='SegTTAModel') norm_cfg = dict(requires_grad=True, type='SyncBN') optim_wrapper = dict( optimizer=dict( betas=( 0.9, 0.999, ), lr=6e-05, type='AdamW', weight_decay=0.01), paramwise_cfg=dict( custom_keys=dict( absolute_pos_embed=dict(decay_mult=0.0), norm=dict(decay_mult=0.0), relative_position_bias_table=dict(decay_mult=0.0))), type='OptimWrapper') optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) param_scheduler = [ dict( begin=0, by_epoch=False, end=1500, start_factor=1e-06, type='LinearLR'), dict( begin=1500, by_epoch=False, end=160000, eta_min=0.0, power=1.0, type='PolyLR'), ] resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=1, dataset=dict( data_prefix=dict( img_path='images/validation', seg_map_path='annotations/validation'), data_root='data/ade/ADEChallengeData2016', pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict( transforms=[ [ dict(keep_ratio=True, scale_factor=0.5, type='Resize'), dict( keep_ratio=True, scale_factor=0.75, type='Resize'), dict(keep_ratio=True, scale_factor=1.0, type='Resize'), dict( keep_ratio=True, scale_factor=1.25, type='Resize'), dict(keep_ratio=True, scale_factor=1.5, type='Resize'), dict( keep_ratio=True, scale_factor=1.75, type='Resize'), ], [ dict( direction='horizontal', prob=0.0, type='RandomFlip'), dict( direction='horizontal', prob=1.0, type='RandomFlip'), ], [ dict(type='LoadAnnotations'), ], [ dict(type='PackSegInputs'), ], ], type='TestTimeAug'), ], type='ADE20KDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( iou_metrics=[ 'mIoU', ], type='IoUMetric') test_pipeline = [ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 2560, 640, ), type='Resize'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict(type='PackSegInputs'), ] train_cfg = dict( max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) train_dataloader = dict( batch_size=2, dataset=dict( data_prefix=dict( img_path='images/training', seg_map_path='annotations/training'), data_root='data/ade/ADEChallengeData2016', pipeline=[ dict(type='LoadImageFromFile'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict( keep_ratio=True, ratio_range=( 0.5, 2.0, ), scale=( 2560, 640, ), type='RandomResize'), dict( cat_max_ratio=0.75, crop_size=( 640, 640, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PhotoMetricDistortion'), dict(type='PackSegInputs'), ], type='ADE20KDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='InfiniteSampler')) train_pipeline = [ dict(type='LoadImageFromFile'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict( keep_ratio=True, ratio_range=( 0.5, 2.0, ), scale=( 2560, 640, ), type='RandomResize'), dict(cat_max_ratio=0.75, crop_size=( 640, 640, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PhotoMetricDistortion'), dict(type='PackSegInputs'), ] tta_model = dict( module=dict( auxiliary_head=dict( align_corners=False, channels=256, concat_input=False, dropout_ratio=0.1, in_channels=384, in_index=2, loss_decode=dict( loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, num_convs=1, type='FCNHead'), backbone=dict( act_cfg=dict(type='GELU'), attn_drop_rate=0.0, depths=( 2, 2, 27, 2, ), dims=96, drop_path_rate=0.3, drop_rate=0.0, embed_dims=96, init_cfg=dict( checkpoint= 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth', type='Pretrained'), mlp_ratio=4, norm_cfg=dict(requires_grad=True, type='LN'), num_heads=[ 3, 6, 12, 24, ], out_indices=( 0, 1, 2, 3, ), patch_norm=True, patch_size=4, pretrain_img_size=224, pretrained='../../ckpts/vssmsmall/ckpt_epoch_238.pth', qk_scale=None, qkv_bias=True, strides=( 4, 2, 2, 2, ), type='MMSEG_VSSM', use_abs_pos_embed=False, window_size=7), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 640, 640, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor'), decode_head=dict( align_corners=False, channels=512, dropout_ratio=0.1, in_channels=[ 96, 192, 384, 768, ], in_index=[ 0, 1, 2, 3, ], loss_decode=dict( loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, pool_scales=( 1, 2, 3, 6, ), type='UPerHead'), pretrained=None, test_cfg=dict(mode='whole'), train_cfg=dict(), type='EncoderDecoder'), type='SegTTAModel') tta_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict( transforms=[ [ dict(keep_ratio=True, scale_factor=0.5, type='Resize'), dict(keep_ratio=True, scale_factor=0.75, type='Resize'), dict(keep_ratio=True, scale_factor=1.0, type='Resize'), dict(keep_ratio=True, scale_factor=1.25, type='Resize'), dict(keep_ratio=True, scale_factor=1.5, type='Resize'), dict(keep_ratio=True, scale_factor=1.75, type='Resize'), ], [ dict(direction='horizontal', prob=0.0, type='RandomFlip'), dict(direction='horizontal', prob=1.0, type='RandomFlip'), ], [ dict(type='LoadAnnotations'), ], [ dict(type='PackSegInputs'), ], ], type='TestTimeAug'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=1, dataset=dict( data_prefix=dict( img_path='images/validation', seg_map_path='annotations/validation'), data_root='data/ade/ADEChallengeData2016', pipeline=[ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 2560, 640, ), type='Resize'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict(type='PackSegInputs'), ], type='ADE20KDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) val_evaluator = dict( iou_metrics=[ 'mIoU', ], type='IoUMetric') vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( name='visualizer', type='SegLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small' 2024/01/18 13:41:39 - mmengine - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) RuntimeInfoHook (BELOW_NORMAL) LoggerHook -------------------- before_train: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (VERY_LOW ) CheckpointHook -------------------- before_train_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) DistSamplerSeedHook -------------------- before_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook -------------------- after_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) SegVisualizationHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_train_epoch: (NORMAL ) IterTimerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_val: (VERY_HIGH ) RuntimeInfoHook -------------------- before_val_epoch: (NORMAL ) IterTimerHook -------------------- before_val_iter: (NORMAL ) IterTimerHook -------------------- after_val_iter: (NORMAL ) IterTimerHook (NORMAL ) SegVisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_val_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_val: (VERY_HIGH ) RuntimeInfoHook -------------------- after_train: (VERY_HIGH ) RuntimeInfoHook (VERY_LOW ) CheckpointHook -------------------- before_test: (VERY_HIGH ) RuntimeInfoHook -------------------- before_test_epoch: (NORMAL ) IterTimerHook -------------------- before_test_iter: (NORMAL ) IterTimerHook -------------------- after_test_iter: (NORMAL ) IterTimerHook (NORMAL ) SegVisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_test_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_test: (VERY_HIGH ) RuntimeInfoHook -------------------- after_run: (BELOW_NORMAL) LoggerHook -------------------- 2024/01/18 13:41:41 - mmengine - WARNING - The prefix is not set in metric class IoUMetric. 2024/01/18 13:41:42 - mmengine - INFO - Load checkpoint from /home/LiuYue/Workspace3/ckpts/segmentation/work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small/iter_160000.pth 2024/01/18 13:53:00 - mmengine - INFO - Iter(test) [ 50/500] eta: 1:41:38 time: 9.2342 data_time: 0.0153 memory: 53982 2024/01/18 14:00:40 - mmengine - INFO - Iter(test) [100/500] eta: 1:15:51 time: 3.6223 data_time: 0.0136 memory: 52867 2024/01/18 14:04:27 - mmengine - INFO - Iter(test) [150/500] eta: 0:53:03 time: 1.3106 data_time: 0.0160 memory: 52745 2024/01/18 14:11:51 - mmengine - INFO - Iter(test) [200/500] eta: 0:45:12 time: 3.2742 data_time: 0.0150 memory: 52971 2024/01/18 14:15:23 - mmengine - INFO - Iter(test) [250/500] eta: 0:33:40 time: 4.4249 data_time: 0.0168 memory: 53191 2024/01/18 14:20:45 - mmengine - INFO - Iter(test) [300/500] eta: 0:26:01 time: 6.0236 data_time: 0.0202 memory: 56580 2024/01/18 14:24:59 - mmengine - INFO - Iter(test) [350/500] eta: 0:18:32 time: 7.2593 data_time: 0.0146 memory: 52298 2024/01/18 14:28:39 - mmengine - INFO - Iter(test) [400/500] eta: 0:11:44 time: 2.0090 data_time: 0.0136 memory: 53112 2024/01/18 14:32:55 - mmengine - INFO - Iter(test) [450/500] eta: 0:05:41 time: 0.9588 data_time: 0.0158 memory: 52817 2024/01/18 14:36:26 - mmengine - INFO - Iter(test) [500/500] eta: 0:00:00 time: 7.8064 data_time: 0.0142 memory: 52995 2024/01/18 14:38:02 - mmengine - INFO - per class results: 2024/01/18 14:38:02 - mmengine - INFO - +---------------------+-------+-------+ | Class | IoU | Acc | +---------------------+-------+-------+ | wall | 78.75 | 89.36 | | building | 83.12 | 92.71 | | sky | 94.5 | 97.63 | | floor | 81.76 | 90.23 | | tree | 74.85 | 88.04 | | ceiling | 85.58 | 92.92 | | road | 85.53 | 91.16 | | bed | 89.56 | 95.86 | | windowpane | 64.66 | 81.12 | | grass | 65.41 | 80.54 | | cabinet | 61.71 | 73.16 | | sidewalk | 69.77 | 82.53 | | person | 80.78 | 92.72 | | earth | 39.83 | 53.66 | | door | 53.67 | 67.04 | | table | 61.54 | 79.57 | | mountain | 57.79 | 75.02 | | plant | 52.7 | 63.35 | | curtain | 74.79 | 86.97 | | chair | 59.42 | 72.69 | | car | 84.32 | 92.36 | | water | 55.89 | 69.4 | | painting | 74.79 | 87.5 | | sofa | 68.36 | 84.71 | | shelf | 44.36 | 63.6 | | house | 46.15 | 61.18 | | sea | 57.85 | 81.06 | | mirror | 69.21 | 77.51 | | rug | 61.87 | 73.64 | | field | 29.81 | 47.44 | | armchair | 46.69 | 64.08 | | seat | 62.14 | 82.15 | | fence | 47.03 | 64.8 | | desk | 53.19 | 70.23 | | rock | 46.6 | 70.86 | | wardrobe | 46.65 | 66.04 | | lamp | 66.87 | 78.03 | | bathtub | 83.11 | 86.64 | | railing | 35.37 | 49.1 | | cushion | 60.08 | 72.91 | | base | 28.85 | 42.24 | | box | 26.91 | 33.36 | | column | 46.47 | 58.22 | | signboard | 38.24 | 51.08 | | chest of drawers | 45.6 | 66.14 | | counter | 25.59 | 34.04 | | sand | 45.36 | 64.69 | | sink | 73.4 | 81.15 | | skyscraper | 49.52 | 60.23 | | fireplace | 80.08 | 90.52 | | refrigerator | 76.78 | 81.87 | | grandstand | 46.64 | 79.47 | | path | 25.75 | 36.79 | | stairs | 34.91 | 44.92 | | runway | 70.95 | 92.5 | | case | 61.74 | 76.13 | | pool table | 91.83 | 96.65 | | pillow | 60.23 | 71.02 | | screen door | 70.03 | 75.59 | | stairway | 34.92 | 41.71 | | river | 9.03 | 17.44 | | bridge | 67.13 | 78.16 | | bookcase | 44.09 | 68.9 | | blind | 46.02 | 50.39 | | coffee table | 59.14 | 82.97 | | toilet | 85.59 | 90.78 | | flower | 37.12 | 51.46 | | book | 46.03 | 62.65 | | hill | 12.8 | 20.47 | | bench | 40.19 | 46.67 | | countertop | 56.79 | 74.35 | | stove | 78.19 | 85.06 | | palm | 51.92 | 70.76 | | kitchen island | 49.25 | 77.56 | | computer | 76.69 | 89.25 | | swivel chair | 46.97 | 64.54 | | boat | 39.55 | 56.75 | | bar | 40.71 | 53.86 | | arcade machine | 85.72 | 94.08 | | hovel | 33.09 | 39.0 | | bus | 93.28 | 97.04 | | towel | 66.95 | 78.09 | | light | 57.36 | 64.37 | | truck | 43.92 | 56.1 | | tower | 17.34 | 27.06 | | chandelier | 70.27 | 85.27 | | awning | 25.15 | 30.83 | | streetlight | 27.76 | 33.84 | | booth | 34.47 | 38.09 | | television receiver | 70.57 | 77.57 | | airplane | 60.13 | 67.32 | | dirt track | 1.29 | 2.65 | | apparel | 30.46 | 48.93 | | pole | 22.16 | 29.32 | | land | 2.43 | 3.38 | | bannister | 12.98 | 17.41 | | escalator | 35.52 | 51.31 | | ottoman | 49.75 | 64.2 | | bottle | 36.52 | 57.03 | | buffet | 45.18 | 59.91 | | poster | 26.96 | 30.14 | | stage | 15.07 | 19.98 | | van | 40.79 | 58.46 | | ship | 58.61 | 93.2 | | fountain | 37.13 | 37.62 | | conveyer belt | 73.14 | 91.11 | | canopy | 16.41 | 21.48 | | washer | 70.64 | 72.56 | | plaything | 26.95 | 40.15 | | swimming pool | 46.85 | 49.67 | | stool | 43.95 | 55.94 | | barrel | 43.46 | 68.28 | | basket | 28.25 | 40.89 | | waterfall | 52.45 | 64.56 | | tent | 88.84 | 98.38 | | bag | 16.38 | 20.77 | | minibike | 74.94 | 87.17 | | cradle | 76.09 | 97.44 | | oven | 56.13 | 67.6 | | ball | 48.07 | 61.55 | | food | 47.43 | 54.79 | | step | 11.71 | 13.34 | | tank | 49.12 | 52.75 | | trade name | 25.88 | 29.71 | | microwave | 85.51 | 93.72 | | pot | 45.76 | 52.34 | | animal | 55.15 | 57.0 | | bicycle | 57.35 | 80.39 | | lake | 47.5 | 63.73 | | dishwasher | 70.78 | 80.28 | | screen | 66.71 | 81.93 | | blanket | 11.9 | 13.84 | | sculpture | 64.88 | 77.88 | | hood | 58.27 | 69.63 | | sconce | 49.96 | 61.09 | | vase | 44.7 | 55.6 | | traffic light | 37.16 | 53.95 | | tray | 7.6 | 10.69 | | ashcan | 42.42 | 56.09 | | fan | 62.16 | 76.81 | | pier | 47.99 | 56.02 | | crt screen | 6.95 | 19.0 | | plate | 53.63 | 67.7 | | monitor | 4.75 | 5.08 | | bulletin board | 54.16 | 62.52 | | shower | 0.0 | 0.0 | | radiator | 62.46 | 71.64 | | glass | 13.45 | 14.01 | | clock | 40.9 | 46.31 | | flag | 50.72 | 53.6 | +---------------------+-------+-------+ 2024/01/18 14:38:02 - mmengine - INFO - Iter(test) [500/500] aAcc: 83.8800 mIoU: 50.7800 mAcc: 62.2700 data_time: 0.0226 time: 6.5675