2024/01/14 17:47:47 - mmengine - INFO - ------------------------------------------------------------ System environment: sys.platform: linux Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] CUDA available: True numpy_random_seed: 1688668109 GPU 0,1,2,3,4,5,6,7: Tesla V100-SXM3-32GB CUDA_HOME: /usr/local/cuda NVCC: Cuda compilation tools, release 11.7, V11.7.99 GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1) 9.4.0 PyTorch: 1.13.0 PyTorch compiling details: PyTorch built with: - GCC 9.3 - C++ Version: 201402 - Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815) - OpenMP 201511 (a.k.a. OpenMP 4.5) - LAPACK is enabled (usually provided by MKL) - NNPACK is enabled - CPU capability usage: AVX2 - CUDA Runtime 11.7 - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 - CuDNN 8.5 - Magma 2.6.1 - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, TorchVision: 0.14.0 OpenCV: 4.9.0 MMEngine: 0.10.1 Runtime environment: cudnn_benchmark: True mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} dist_cfg: {'backend': 'nccl'} seed: 1688668109 Distributed launcher: pytorch Distributed training: True GPU number: 8 ------------------------------------------------------------ 2024/01/14 17:47:48 - mmengine - INFO - Config: backbone_norm_cfg = dict(requires_grad=True, type='LN') checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth' crop_size = ( 512, 512, ) data_preprocessor = dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 512, 512, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor') data_root = 'data/ade/ADEChallengeData2016' dataset_type = 'ADE20KDataset' default_hooks = dict( checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), param_scheduler=dict(type='ParamSchedulerHook'), sampler_seed=dict(type='DistSamplerSeedHook'), timer=dict(type='IterTimerHook'), visualization=dict(type='SegVisualizationHook')) default_scope = 'mmseg' env_cfg = dict( cudnn_benchmark=True, dist_cfg=dict(backend='nccl'), mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) img_ratios = [ 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, ] launcher = 'pytorch' load_from = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth' log_level = 'INFO' log_processor = dict(by_epoch=False) model = dict( module=dict( auxiliary_head=dict( align_corners=False, channels=256, concat_input=False, dropout_ratio=0.1, in_channels=512, in_index=2, loss_decode=dict( loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, num_convs=1, type='FCNHead'), backbone=dict( act_cfg=dict(type='GELU'), attn_drop_rate=0.0, depths=( 2, 2, 27, 2, ), dims=128, drop_path_rate=0.3, drop_rate=0.0, embed_dims=128, init_cfg=dict( checkpoint= 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth', type='Pretrained'), mlp_ratio=4, norm_cfg=dict(requires_grad=True, type='LN'), num_heads=[ 4, 8, 16, 32, ], out_indices=( 0, 1, 2, 3, ), patch_norm=True, patch_size=4, pretrain_img_size=224, pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth', qk_scale=None, qkv_bias=True, strides=( 4, 2, 2, 2, ), type='MMSEG_VSSM', use_abs_pos_embed=False, window_size=7), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 512, 512, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor'), decode_head=dict( align_corners=False, channels=512, dropout_ratio=0.1, in_channels=[ 128, 256, 512, 1024, ], in_index=[ 0, 1, 2, 3, ], loss_decode=dict( loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, pool_scales=( 1, 2, 3, 6, ), type='UPerHead'), pretrained=None, test_cfg=dict(mode='whole'), train_cfg=dict(), type='EncoderDecoder'), type='SegTTAModel') norm_cfg = dict(requires_grad=True, type='SyncBN') optim_wrapper = dict( optimizer=dict( betas=( 0.9, 0.999, ), lr=6e-05, type='AdamW', weight_decay=0.01), paramwise_cfg=dict( custom_keys=dict( absolute_pos_embed=dict(decay_mult=0.0), norm=dict(decay_mult=0.0), relative_position_bias_table=dict(decay_mult=0.0))), type='OptimWrapper') optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) param_scheduler = [ dict( begin=0, by_epoch=False, end=1500, start_factor=1e-06, type='LinearLR'), dict( begin=1500, by_epoch=False, end=160000, eta_min=0.0, power=1.0, type='PolyLR'), ] resume = False test_cfg = dict(type='TestLoop') test_dataloader = dict( batch_size=1, dataset=dict( data_prefix=dict( img_path='images/validation', seg_map_path='annotations/validation'), data_root='data/ade/ADEChallengeData2016', pipeline=[ dict(backend_args=None, type='LoadImageFromFile'), dict( transforms=[ [ dict(keep_ratio=True, scale_factor=0.5, type='Resize'), dict( keep_ratio=True, scale_factor=0.75, type='Resize'), dict(keep_ratio=True, scale_factor=1.0, type='Resize'), dict( keep_ratio=True, scale_factor=1.25, type='Resize'), dict(keep_ratio=True, scale_factor=1.5, type='Resize'), dict( keep_ratio=True, scale_factor=1.75, type='Resize'), ], [ dict( direction='horizontal', prob=0.0, type='RandomFlip'), dict( direction='horizontal', prob=1.0, type='RandomFlip'), ], [ dict(type='LoadAnnotations'), ], [ dict(type='PackSegInputs'), ], ], type='TestTimeAug'), ], type='ADE20KDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) test_evaluator = dict( iou_metrics=[ 'mIoU', ], type='IoUMetric') test_pipeline = [ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 2048, 512, ), type='Resize'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict(type='PackSegInputs'), ] train_cfg = dict( max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) train_dataloader = dict( batch_size=2, dataset=dict( data_prefix=dict( img_path='images/training', seg_map_path='annotations/training'), data_root='data/ade/ADEChallengeData2016', pipeline=[ dict(type='LoadImageFromFile'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict( keep_ratio=True, ratio_range=( 0.5, 2.0, ), scale=( 2048, 512, ), type='RandomResize'), dict( cat_max_ratio=0.75, crop_size=( 512, 512, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PhotoMetricDistortion'), dict(type='PackSegInputs'), ], type='ADE20KDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=True, type='InfiniteSampler')) train_pipeline = [ dict(type='LoadImageFromFile'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict( keep_ratio=True, ratio_range=( 0.5, 2.0, ), scale=( 2048, 512, ), type='RandomResize'), dict(cat_max_ratio=0.75, crop_size=( 512, 512, ), type='RandomCrop'), dict(prob=0.5, type='RandomFlip'), dict(type='PhotoMetricDistortion'), dict(type='PackSegInputs'), ] tta_model = dict( module=dict( auxiliary_head=dict( align_corners=False, channels=256, concat_input=False, dropout_ratio=0.1, in_channels=512, in_index=2, loss_decode=dict( loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, num_convs=1, type='FCNHead'), backbone=dict( act_cfg=dict(type='GELU'), attn_drop_rate=0.0, depths=( 2, 2, 27, 2, ), dims=128, drop_path_rate=0.3, drop_rate=0.0, embed_dims=128, init_cfg=dict( checkpoint= 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_20220317-e9b98025.pth', type='Pretrained'), mlp_ratio=4, norm_cfg=dict(requires_grad=True, type='LN'), num_heads=[ 4, 8, 16, 32, ], out_indices=( 0, 1, 2, 3, ), patch_norm=True, patch_size=4, pretrain_img_size=224, pretrained='../../ckpts/vssmbase/ckpt_epoch_260.pth', qk_scale=None, qkv_bias=True, strides=( 4, 2, 2, 2, ), type='MMSEG_VSSM', use_abs_pos_embed=False, window_size=7), data_preprocessor=dict( bgr_to_rgb=True, mean=[ 123.675, 116.28, 103.53, ], pad_val=0, seg_pad_val=255, size=( 512, 512, ), std=[ 58.395, 57.12, 57.375, ], type='SegDataPreProcessor'), decode_head=dict( align_corners=False, channels=512, dropout_ratio=0.1, in_channels=[ 128, 256, 512, 1024, ], in_index=[ 0, 1, 2, 3, ], loss_decode=dict( loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), norm_cfg=dict(requires_grad=True, type='SyncBN'), num_classes=150, pool_scales=( 1, 2, 3, 6, ), type='UPerHead'), pretrained=None, test_cfg=dict(mode='whole'), train_cfg=dict(), type='EncoderDecoder'), type='SegTTAModel') tta_pipeline = [ dict(backend_args=None, type='LoadImageFromFile'), dict( transforms=[ [ dict(keep_ratio=True, scale_factor=0.5, type='Resize'), dict(keep_ratio=True, scale_factor=0.75, type='Resize'), dict(keep_ratio=True, scale_factor=1.0, type='Resize'), dict(keep_ratio=True, scale_factor=1.25, type='Resize'), dict(keep_ratio=True, scale_factor=1.5, type='Resize'), dict(keep_ratio=True, scale_factor=1.75, type='Resize'), ], [ dict(direction='horizontal', prob=0.0, type='RandomFlip'), dict(direction='horizontal', prob=1.0, type='RandomFlip'), ], [ dict(type='LoadAnnotations'), ], [ dict(type='PackSegInputs'), ], ], type='TestTimeAug'), ] val_cfg = dict(type='ValLoop') val_dataloader = dict( batch_size=1, dataset=dict( data_prefix=dict( img_path='images/validation', seg_map_path='annotations/validation'), data_root='data/ade/ADEChallengeData2016', pipeline=[ dict(type='LoadImageFromFile'), dict(keep_ratio=True, scale=( 2048, 512, ), type='Resize'), dict(reduce_zero_label=True, type='LoadAnnotations'), dict(type='PackSegInputs'), ], type='ADE20KDataset'), num_workers=4, persistent_workers=True, sampler=dict(shuffle=False, type='DefaultSampler')) val_evaluator = dict( iou_metrics=[ 'mIoU', ], type='IoUMetric') vis_backends = [ dict(type='LocalVisBackend'), ] visualizer = dict( name='visualizer', type='SegLocalVisualizer', vis_backends=[ dict(type='LocalVisBackend'), ]) work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base' 2024/01/14 17:47:58 - mmengine - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) RuntimeInfoHook (BELOW_NORMAL) LoggerHook -------------------- before_train: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (VERY_LOW ) CheckpointHook -------------------- before_train_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) DistSamplerSeedHook -------------------- before_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook -------------------- after_train_iter: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (NORMAL ) SegVisualizationHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_train_epoch: (NORMAL ) IterTimerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- before_val: (VERY_HIGH ) RuntimeInfoHook -------------------- before_val_epoch: (NORMAL ) IterTimerHook -------------------- before_val_iter: (NORMAL ) IterTimerHook -------------------- after_val_iter: (NORMAL ) IterTimerHook (NORMAL ) SegVisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_val_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook (LOW ) ParamSchedulerHook (VERY_LOW ) CheckpointHook -------------------- after_val: (VERY_HIGH ) RuntimeInfoHook -------------------- after_train: (VERY_HIGH ) RuntimeInfoHook (VERY_LOW ) CheckpointHook -------------------- before_test: (VERY_HIGH ) RuntimeInfoHook -------------------- before_test_epoch: (NORMAL ) IterTimerHook -------------------- before_test_iter: (NORMAL ) IterTimerHook -------------------- after_test_iter: (NORMAL ) IterTimerHook (NORMAL ) SegVisualizationHook (BELOW_NORMAL) LoggerHook -------------------- after_test_epoch: (VERY_HIGH ) RuntimeInfoHook (NORMAL ) IterTimerHook (BELOW_NORMAL) LoggerHook -------------------- after_test: (VERY_HIGH ) RuntimeInfoHook -------------------- after_run: (BELOW_NORMAL) LoggerHook -------------------- 2024/01/14 17:47:59 - mmengine - WARNING - The prefix is not set in metric class IoUMetric. 2024/01/14 17:48:08 - mmengine - INFO - Load checkpoint from ./work_dirs/upernet_vssm_4xb4-160k_ade20k-512x512_base/iter_160000.pth 2024/01/14 18:02:41 - mmengine - INFO - Iter(test) [ 50/250] eta: 0:58:11 time: 10.1193 data_time: 0.0121 memory: 20518 2024/01/14 18:10:19 - mmengine - INFO - Iter(test) [100/250] eta: 0:33:17 time: 8.5116 data_time: 0.0100 memory: 19429 2024/01/14 18:15:12 - mmengine - INFO - Iter(test) [150/250] eta: 0:18:02 time: 5.7400 data_time: 0.0111 memory: 19330 2024/01/14 18:20:32 - mmengine - INFO - Iter(test) [200/250] eta: 0:08:05 time: 6.0980 data_time: 0.0114 memory: 19330 2024/01/14 18:25:01 - mmengine - INFO - Iter(test) [250/250] eta: 0:00:00 time: 3.3462 data_time: 0.0118 memory: 18931 2024/01/14 18:28:07 - mmengine - INFO - per class results: 2024/01/14 18:28:07 - mmengine - INFO - +---------------------+-------+-------+ | Class | IoU | Acc | +---------------------+-------+-------+ | wall | 78.97 | 89.79 | | building | 83.44 | 93.48 | | sky | 94.33 | 97.56 | | floor | 82.05 | 90.77 | | tree | 74.87 | 88.67 | | ceiling | 85.17 | 93.67 | | road | 84.22 | 90.66 | | bed | 89.05 | 96.36 | | windowpane | 63.55 | 79.82 | | grass | 69.99 | 84.45 | | cabinet | 62.16 | 75.89 | | sidewalk | 66.09 | 81.19 | | person | 81.66 | 93.13 | | earth | 37.51 | 48.77 | | door | 52.74 | 65.76 | | table | 62.93 | 78.47 | | mountain | 63.34 | 78.01 | | plant | 52.21 | 63.43 | | curtain | 75.86 | 87.52 | | chair | 61.77 | 72.89 | | car | 84.12 | 90.96 | | water | 53.74 | 67.62 | | painting | 76.67 | 89.15 | | sofa | 69.15 | 84.85 | | shelf | 43.65 | 63.48 | | house | 37.83 | 50.42 | | sea | 63.54 | 89.14 | | mirror | 69.31 | 76.99 | | rug | 55.02 | 64.68 | | field | 27.91 | 43.35 | | armchair | 48.02 | 67.01 | | seat | 63.51 | 84.09 | | fence | 47.72 | 61.45 | | desk | 53.92 | 72.17 | | rock | 45.01 | 66.9 | | wardrobe | 49.15 | 59.93 | | lamp | 66.03 | 77.09 | | bathtub | 80.36 | 85.58 | | railing | 35.23 | 49.33 | | cushion | 60.43 | 73.02 | | base | 31.65 | 42.54 | | box | 26.89 | 31.63 | | column | 48.94 | 56.13 | | signboard | 39.69 | 50.97 | | chest of drawers | 48.02 | 62.14 | | counter | 25.34 | 35.46 | | sand | 55.67 | 73.43 | | sink | 74.58 | 80.96 | | skyscraper | 42.42 | 51.55 | | fireplace | 80.92 | 91.73 | | refrigerator | 77.76 | 85.12 | | grandstand | 45.02 | 83.82 | | path | 16.49 | 26.37 | | stairs | 35.1 | 42.42 | | runway | 72.8 | 93.9 | | case | 48.01 | 62.28 | | pool table | 93.33 | 97.32 | | pillow | 61.87 | 72.67 | | screen door | 68.21 | 77.03 | | stairway | 32.7 | 38.45 | | river | 11.6 | 22.81 | | bridge | 38.77 | 43.57 | | bookcase | 44.89 | 65.61 | | blind | 46.61 | 48.95 | | coffee table | 59.71 | 84.15 | | toilet | 84.8 | 90.86 | | flower | 43.64 | 64.1 | | book | 49.21 | 66.22 | | hill | 13.48 | 21.64 | | bench | 55.21 | 64.27 | | countertop | 49.06 | 73.98 | | stove | 77.39 | 83.56 | | palm | 51.11 | 67.45 | | kitchen island | 49.14 | 76.72 | | computer | 69.78 | 77.84 | | swivel chair | 39.71 | 56.34 | | boat | 48.05 | 52.89 | | bar | 26.98 | 35.7 | | arcade machine | 69.15 | 76.38 | | hovel | 20.92 | 30.12 | | bus | 87.77 | 97.1 | | towel | 67.32 | 75.99 | | light | 57.87 | 64.92 | | truck | 37.61 | 48.83 | | tower | 35.31 | 45.43 | | chandelier | 65.99 | 79.86 | | awning | 31.7 | 37.19 | | streetlight | 28.83 | 35.37 | | booth | 52.58 | 58.07 | | television receiver | 70.28 | 80.92 | | airplane | 61.82 | 68.65 | | dirt track | 13.58 | 49.33 | | apparel | 40.61 | 58.04 | | pole | 27.08 | 34.57 | | land | 1.6 | 3.64 | | bannister | 15.63 | 19.65 | | escalator | 28.68 | 31.74 | | ottoman | 52.2 | 63.91 | | bottle | 37.11 | 60.8 | | buffet | 34.32 | 38.55 | | poster | 30.1 | 37.59 | | stage | 19.22 | 26.17 | | van | 42.28 | 60.26 | | ship | 61.48 | 88.98 | | fountain | 19.35 | 21.66 | | conveyer belt | 86.38 | 92.34 | | canopy | 31.41 | 40.68 | | washer | 75.23 | 76.0 | | plaything | 30.46 | 46.68 | | swimming pool | 70.72 | 77.6 | | stool | 44.38 | 59.55 | | barrel | 60.72 | 73.06 | | basket | 37.5 | 48.99 | | waterfall | 64.29 | 78.71 | | tent | 92.9 | 98.47 | | bag | 16.7 | 19.33 | | minibike | 71.87 | 86.48 | | cradle | 77.59 | 96.96 | | oven | 44.84 | 79.75 | | ball | 33.6 | 63.33 | | food | 49.67 | 60.48 | | step | 11.71 | 13.09 | | tank | 57.11 | 61.44 | | trade name | 29.41 | 33.71 | | microwave | 71.46 | 75.56 | | pot | 47.52 | 56.11 | | animal | 43.99 | 44.89 | | bicycle | 56.79 | 78.38 | | lake | 54.44 | 63.37 | | dishwasher | 67.34 | 71.8 | | screen | 52.35 | 69.01 | | blanket | 9.74 | 11.95 | | sculpture | 69.57 | 84.66 | | hood | 68.9 | 73.3 | | sconce | 50.94 | 60.25 | | vase | 46.92 | 61.85 | | traffic light | 38.47 | 57.45 | | tray | 11.6 | 18.94 | | ashcan | 49.51 | 59.73 | | fan | 64.55 | 77.35 | | pier | 43.19 | 53.55 | | crt screen | 6.65 | 20.83 | | plate | 56.85 | 72.0 | | monitor | 6.72 | 9.36 | | bulletin board | 40.76 | 47.92 | | shower | 2.85 | 4.45 | | radiator | 66.1 | 72.02 | | glass | 14.93 | 15.65 | | clock | 39.09 | 45.98 | | flag | 53.01 | 56.24 | +---------------------+-------+-------+ 2024/01/14 18:28:07 - mmengine - INFO - Iter(test) [250/250] aAcc: 83.9200 mIoU: 51.1200 mAcc: 62.5500 data_time: 0.0509 time: 8.8501