|
2024/01/18 13:41:34 - mmengine - INFO - |
|
------------------------------------------------------------ |
|
System environment: |
|
sys.platform: linux |
|
Python: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] |
|
CUDA available: True |
|
numpy_random_seed: 1142582054 |
|
GPU 0,1,2,3,4,5,6: NVIDIA A100-SXM4-80GB |
|
CUDA_HOME: /usr/local/cuda-11.7 |
|
NVCC: Cuda compilation tools, release 11.7, V11.7.64 |
|
GCC: gcc (Ubuntu 9.4.0-1ubuntu1~20.04.3) 9.4.0 |
|
PyTorch: 1.13.0 |
|
PyTorch compiling details: PyTorch built with: |
|
- GCC 9.3 |
|
- C++ Version: 201402 |
|
- Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications |
|
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815) |
|
- OpenMP 201511 (a.k.a. OpenMP 4.5) |
|
- LAPACK is enabled (usually provided by MKL) |
|
- NNPACK is enabled |
|
- CPU capability usage: AVX2 |
|
- CUDA Runtime 11.7 |
|
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37 |
|
- CuDNN 8.5 |
|
- Magma 2.6.1 |
|
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.0, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, |
|
|
|
TorchVision: 0.14.0 |
|
OpenCV: 4.8.1 |
|
MMEngine: 0.10.1 |
|
|
|
Runtime environment: |
|
cudnn_benchmark: True |
|
mp_cfg: {'mp_start_method': 'fork', 'opencv_num_threads': 0} |
|
dist_cfg: {'backend': 'nccl'} |
|
seed: 1142582054 |
|
Distributed launcher: pytorch |
|
Distributed training: True |
|
GPU number: 4 |
|
------------------------------------------------------------ |
|
|
|
2024/01/18 13:41:36 - mmengine - INFO - Config: |
|
backbone_norm_cfg = dict(requires_grad=True, type='LN') |
|
checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth' |
|
crop_size = ( |
|
640, |
|
640, |
|
) |
|
data_preprocessor = dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=( |
|
640, |
|
640, |
|
), |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='SegDataPreProcessor') |
|
data_root = 'data/ade/ADEChallengeData2016' |
|
dataset_type = 'ADE20KDataset' |
|
default_hooks = dict( |
|
checkpoint=dict(by_epoch=False, interval=16000, type='CheckpointHook'), |
|
logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'), |
|
param_scheduler=dict(type='ParamSchedulerHook'), |
|
sampler_seed=dict(type='DistSamplerSeedHook'), |
|
timer=dict(type='IterTimerHook'), |
|
visualization=dict(type='SegVisualizationHook')) |
|
default_scope = 'mmseg' |
|
env_cfg = dict( |
|
cudnn_benchmark=True, |
|
dist_cfg=dict(backend='nccl'), |
|
mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0)) |
|
img_ratios = [ |
|
0.5, |
|
0.75, |
|
1.0, |
|
1.25, |
|
1.5, |
|
1.75, |
|
] |
|
launcher = 'pytorch' |
|
load_from = '/home/LiuYue/Workspace3/ckpts/segmentation/work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small/iter_160000.pth' |
|
log_level = 'INFO' |
|
log_processor = dict(by_epoch=False) |
|
model = dict( |
|
module=dict( |
|
auxiliary_head=dict( |
|
align_corners=False, |
|
channels=256, |
|
concat_input=False, |
|
dropout_ratio=0.1, |
|
in_channels=384, |
|
in_index=2, |
|
loss_decode=dict( |
|
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
num_convs=1, |
|
type='FCNHead'), |
|
backbone=dict( |
|
act_cfg=dict(type='GELU'), |
|
attn_drop_rate=0.0, |
|
depths=( |
|
2, |
|
2, |
|
27, |
|
2, |
|
), |
|
dims=96, |
|
drop_path_rate=0.3, |
|
drop_rate=0.0, |
|
embed_dims=96, |
|
init_cfg=dict( |
|
checkpoint= |
|
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth', |
|
type='Pretrained'), |
|
mlp_ratio=4, |
|
norm_cfg=dict(requires_grad=True, type='LN'), |
|
num_heads=[ |
|
3, |
|
6, |
|
12, |
|
24, |
|
], |
|
out_indices=( |
|
0, |
|
1, |
|
2, |
|
3, |
|
), |
|
patch_norm=True, |
|
patch_size=4, |
|
pretrain_img_size=224, |
|
pretrained='../../ckpts/vssmsmall/ckpt_epoch_238.pth', |
|
qk_scale=None, |
|
qkv_bias=True, |
|
strides=( |
|
4, |
|
2, |
|
2, |
|
2, |
|
), |
|
type='MMSEG_VSSM', |
|
use_abs_pos_embed=False, |
|
window_size=7), |
|
data_preprocessor=dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=( |
|
640, |
|
640, |
|
), |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='SegDataPreProcessor'), |
|
decode_head=dict( |
|
align_corners=False, |
|
channels=512, |
|
dropout_ratio=0.1, |
|
in_channels=[ |
|
96, |
|
192, |
|
384, |
|
768, |
|
], |
|
in_index=[ |
|
0, |
|
1, |
|
2, |
|
3, |
|
], |
|
loss_decode=dict( |
|
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
pool_scales=( |
|
1, |
|
2, |
|
3, |
|
6, |
|
), |
|
type='UPerHead'), |
|
pretrained=None, |
|
test_cfg=dict(mode='whole'), |
|
train_cfg=dict(), |
|
type='EncoderDecoder'), |
|
type='SegTTAModel') |
|
norm_cfg = dict(requires_grad=True, type='SyncBN') |
|
optim_wrapper = dict( |
|
optimizer=dict( |
|
betas=( |
|
0.9, |
|
0.999, |
|
), lr=6e-05, type='AdamW', weight_decay=0.01), |
|
paramwise_cfg=dict( |
|
custom_keys=dict( |
|
absolute_pos_embed=dict(decay_mult=0.0), |
|
norm=dict(decay_mult=0.0), |
|
relative_position_bias_table=dict(decay_mult=0.0))), |
|
type='OptimWrapper') |
|
optimizer = dict(lr=0.01, momentum=0.9, type='SGD', weight_decay=0.0005) |
|
param_scheduler = [ |
|
dict( |
|
begin=0, by_epoch=False, end=1500, start_factor=1e-06, |
|
type='LinearLR'), |
|
dict( |
|
begin=1500, |
|
by_epoch=False, |
|
end=160000, |
|
eta_min=0.0, |
|
power=1.0, |
|
type='PolyLR'), |
|
] |
|
resume = False |
|
test_cfg = dict(type='TestLoop') |
|
test_dataloader = dict( |
|
batch_size=1, |
|
dataset=dict( |
|
data_prefix=dict( |
|
img_path='images/validation', |
|
seg_map_path='annotations/validation'), |
|
data_root='data/ade/ADEChallengeData2016', |
|
pipeline=[ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict( |
|
transforms=[ |
|
[ |
|
dict(keep_ratio=True, scale_factor=0.5, type='Resize'), |
|
dict( |
|
keep_ratio=True, scale_factor=0.75, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.0, type='Resize'), |
|
dict( |
|
keep_ratio=True, scale_factor=1.25, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.5, type='Resize'), |
|
dict( |
|
keep_ratio=True, scale_factor=1.75, type='Resize'), |
|
], |
|
[ |
|
dict( |
|
direction='horizontal', |
|
prob=0.0, |
|
type='RandomFlip'), |
|
dict( |
|
direction='horizontal', |
|
prob=1.0, |
|
type='RandomFlip'), |
|
], |
|
[ |
|
dict(type='LoadAnnotations'), |
|
], |
|
[ |
|
dict(type='PackSegInputs'), |
|
], |
|
], |
|
type='TestTimeAug'), |
|
], |
|
type='ADE20KDataset'), |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
test_evaluator = dict( |
|
iou_metrics=[ |
|
'mIoU', |
|
], type='IoUMetric') |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
2560, |
|
640, |
|
), type='Resize'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict(type='PackSegInputs'), |
|
] |
|
train_cfg = dict( |
|
max_iters=160000, type='IterBasedTrainLoop', val_interval=16000) |
|
train_dataloader = dict( |
|
batch_size=2, |
|
dataset=dict( |
|
data_prefix=dict( |
|
img_path='images/training', seg_map_path='annotations/training'), |
|
data_root='data/ade/ADEChallengeData2016', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict( |
|
keep_ratio=True, |
|
ratio_range=( |
|
0.5, |
|
2.0, |
|
), |
|
scale=( |
|
2560, |
|
640, |
|
), |
|
type='RandomResize'), |
|
dict( |
|
cat_max_ratio=0.75, crop_size=( |
|
640, |
|
640, |
|
), type='RandomCrop'), |
|
dict(prob=0.5, type='RandomFlip'), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='PackSegInputs'), |
|
], |
|
type='ADE20KDataset'), |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=True, type='InfiniteSampler')) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict( |
|
keep_ratio=True, |
|
ratio_range=( |
|
0.5, |
|
2.0, |
|
), |
|
scale=( |
|
2560, |
|
640, |
|
), |
|
type='RandomResize'), |
|
dict(cat_max_ratio=0.75, crop_size=( |
|
640, |
|
640, |
|
), type='RandomCrop'), |
|
dict(prob=0.5, type='RandomFlip'), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='PackSegInputs'), |
|
] |
|
tta_model = dict( |
|
module=dict( |
|
auxiliary_head=dict( |
|
align_corners=False, |
|
channels=256, |
|
concat_input=False, |
|
dropout_ratio=0.1, |
|
in_channels=384, |
|
in_index=2, |
|
loss_decode=dict( |
|
loss_weight=0.4, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
num_convs=1, |
|
type='FCNHead'), |
|
backbone=dict( |
|
act_cfg=dict(type='GELU'), |
|
attn_drop_rate=0.0, |
|
depths=( |
|
2, |
|
2, |
|
27, |
|
2, |
|
), |
|
dims=96, |
|
drop_path_rate=0.3, |
|
drop_rate=0.0, |
|
embed_dims=96, |
|
init_cfg=dict( |
|
checkpoint= |
|
'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_small_patch4_window7_224_20220317-7ba6d6dd.pth', |
|
type='Pretrained'), |
|
mlp_ratio=4, |
|
norm_cfg=dict(requires_grad=True, type='LN'), |
|
num_heads=[ |
|
3, |
|
6, |
|
12, |
|
24, |
|
], |
|
out_indices=( |
|
0, |
|
1, |
|
2, |
|
3, |
|
), |
|
patch_norm=True, |
|
patch_size=4, |
|
pretrain_img_size=224, |
|
pretrained='../../ckpts/vssmsmall/ckpt_epoch_238.pth', |
|
qk_scale=None, |
|
qkv_bias=True, |
|
strides=( |
|
4, |
|
2, |
|
2, |
|
2, |
|
), |
|
type='MMSEG_VSSM', |
|
use_abs_pos_embed=False, |
|
window_size=7), |
|
data_preprocessor=dict( |
|
bgr_to_rgb=True, |
|
mean=[ |
|
123.675, |
|
116.28, |
|
103.53, |
|
], |
|
pad_val=0, |
|
seg_pad_val=255, |
|
size=( |
|
640, |
|
640, |
|
), |
|
std=[ |
|
58.395, |
|
57.12, |
|
57.375, |
|
], |
|
type='SegDataPreProcessor'), |
|
decode_head=dict( |
|
align_corners=False, |
|
channels=512, |
|
dropout_ratio=0.1, |
|
in_channels=[ |
|
96, |
|
192, |
|
384, |
|
768, |
|
], |
|
in_index=[ |
|
0, |
|
1, |
|
2, |
|
3, |
|
], |
|
loss_decode=dict( |
|
loss_weight=1.0, type='CrossEntropyLoss', use_sigmoid=False), |
|
norm_cfg=dict(requires_grad=True, type='SyncBN'), |
|
num_classes=150, |
|
pool_scales=( |
|
1, |
|
2, |
|
3, |
|
6, |
|
), |
|
type='UPerHead'), |
|
pretrained=None, |
|
test_cfg=dict(mode='whole'), |
|
train_cfg=dict(), |
|
type='EncoderDecoder'), |
|
type='SegTTAModel') |
|
tta_pipeline = [ |
|
dict(backend_args=None, type='LoadImageFromFile'), |
|
dict( |
|
transforms=[ |
|
[ |
|
dict(keep_ratio=True, scale_factor=0.5, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=0.75, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.0, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.25, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.5, type='Resize'), |
|
dict(keep_ratio=True, scale_factor=1.75, type='Resize'), |
|
], |
|
[ |
|
dict(direction='horizontal', prob=0.0, type='RandomFlip'), |
|
dict(direction='horizontal', prob=1.0, type='RandomFlip'), |
|
], |
|
[ |
|
dict(type='LoadAnnotations'), |
|
], |
|
[ |
|
dict(type='PackSegInputs'), |
|
], |
|
], |
|
type='TestTimeAug'), |
|
] |
|
val_cfg = dict(type='ValLoop') |
|
val_dataloader = dict( |
|
batch_size=1, |
|
dataset=dict( |
|
data_prefix=dict( |
|
img_path='images/validation', |
|
seg_map_path='annotations/validation'), |
|
data_root='data/ade/ADEChallengeData2016', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict(keep_ratio=True, scale=( |
|
2560, |
|
640, |
|
), type='Resize'), |
|
dict(reduce_zero_label=True, type='LoadAnnotations'), |
|
dict(type='PackSegInputs'), |
|
], |
|
type='ADE20KDataset'), |
|
num_workers=4, |
|
persistent_workers=True, |
|
sampler=dict(shuffle=False, type='DefaultSampler')) |
|
val_evaluator = dict( |
|
iou_metrics=[ |
|
'mIoU', |
|
], type='IoUMetric') |
|
vis_backends = [ |
|
dict(type='LocalVisBackend'), |
|
] |
|
visualizer = dict( |
|
name='visualizer', |
|
type='SegLocalVisualizer', |
|
vis_backends=[ |
|
dict(type='LocalVisBackend'), |
|
]) |
|
work_dir = './work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small' |
|
|
|
2024/01/18 13:41:39 - mmengine - INFO - Hooks will be executed in the following order: |
|
before_run: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
before_train: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
before_train_epoch: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) DistSamplerSeedHook |
|
-------------------- |
|
before_train_iter: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
after_train_iter: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) SegVisualizationHook |
|
(BELOW_NORMAL) LoggerHook |
|
(LOW ) ParamSchedulerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
after_train_epoch: |
|
(NORMAL ) IterTimerHook |
|
(LOW ) ParamSchedulerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
before_val: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
before_val_epoch: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
before_val_iter: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
after_val_iter: |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) SegVisualizationHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
after_val_epoch: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(BELOW_NORMAL) LoggerHook |
|
(LOW ) ParamSchedulerHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
after_val: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
after_train: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(VERY_LOW ) CheckpointHook |
|
-------------------- |
|
before_test: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
before_test_epoch: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
before_test_iter: |
|
(NORMAL ) IterTimerHook |
|
-------------------- |
|
after_test_iter: |
|
(NORMAL ) IterTimerHook |
|
(NORMAL ) SegVisualizationHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
after_test_epoch: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
(NORMAL ) IterTimerHook |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
after_test: |
|
(VERY_HIGH ) RuntimeInfoHook |
|
-------------------- |
|
after_run: |
|
(BELOW_NORMAL) LoggerHook |
|
-------------------- |
|
2024/01/18 13:41:41 - mmengine - WARNING - The prefix is not set in metric class IoUMetric. |
|
2024/01/18 13:41:42 - mmengine - INFO - Load checkpoint from /home/LiuYue/Workspace3/ckpts/segmentation/work_dirs/upernet_vssm_4xb4-160k_ade20k-640x640_small/iter_160000.pth |
|
2024/01/18 13:53:00 - mmengine - INFO - Iter(test) [ 50/500] eta: 1:41:38 time: 9.2342 data_time: 0.0153 memory: 53982 |
|
2024/01/18 14:00:40 - mmengine - INFO - Iter(test) [100/500] eta: 1:15:51 time: 3.6223 data_time: 0.0136 memory: 52867 |
|
2024/01/18 14:04:27 - mmengine - INFO - Iter(test) [150/500] eta: 0:53:03 time: 1.3106 data_time: 0.0160 memory: 52745 |
|
2024/01/18 14:11:51 - mmengine - INFO - Iter(test) [200/500] eta: 0:45:12 time: 3.2742 data_time: 0.0150 memory: 52971 |
|
2024/01/18 14:15:23 - mmengine - INFO - Iter(test) [250/500] eta: 0:33:40 time: 4.4249 data_time: 0.0168 memory: 53191 |
|
2024/01/18 14:20:45 - mmengine - INFO - Iter(test) [300/500] eta: 0:26:01 time: 6.0236 data_time: 0.0202 memory: 56580 |
|
2024/01/18 14:24:59 - mmengine - INFO - Iter(test) [350/500] eta: 0:18:32 time: 7.2593 data_time: 0.0146 memory: 52298 |
|
2024/01/18 14:28:39 - mmengine - INFO - Iter(test) [400/500] eta: 0:11:44 time: 2.0090 data_time: 0.0136 memory: 53112 |
|
2024/01/18 14:32:55 - mmengine - INFO - Iter(test) [450/500] eta: 0:05:41 time: 0.9588 data_time: 0.0158 memory: 52817 |
|
2024/01/18 14:36:26 - mmengine - INFO - Iter(test) [500/500] eta: 0:00:00 time: 7.8064 data_time: 0.0142 memory: 52995 |
|
2024/01/18 14:38:02 - mmengine - INFO - per class results: |
|
2024/01/18 14:38:02 - mmengine - INFO - |
|
+---------------------+-------+-------+ |
|
| Class | IoU | Acc | |
|
+---------------------+-------+-------+ |
|
| wall | 78.75 | 89.36 | |
|
| building | 83.12 | 92.71 | |
|
| sky | 94.5 | 97.63 | |
|
| floor | 81.76 | 90.23 | |
|
| tree | 74.85 | 88.04 | |
|
| ceiling | 85.58 | 92.92 | |
|
| road | 85.53 | 91.16 | |
|
| bed | 89.56 | 95.86 | |
|
| windowpane | 64.66 | 81.12 | |
|
| grass | 65.41 | 80.54 | |
|
| cabinet | 61.71 | 73.16 | |
|
| sidewalk | 69.77 | 82.53 | |
|
| person | 80.78 | 92.72 | |
|
| earth | 39.83 | 53.66 | |
|
| door | 53.67 | 67.04 | |
|
| table | 61.54 | 79.57 | |
|
| mountain | 57.79 | 75.02 | |
|
| plant | 52.7 | 63.35 | |
|
| curtain | 74.79 | 86.97 | |
|
| chair | 59.42 | 72.69 | |
|
| car | 84.32 | 92.36 | |
|
| water | 55.89 | 69.4 | |
|
| painting | 74.79 | 87.5 | |
|
| sofa | 68.36 | 84.71 | |
|
| shelf | 44.36 | 63.6 | |
|
| house | 46.15 | 61.18 | |
|
| sea | 57.85 | 81.06 | |
|
| mirror | 69.21 | 77.51 | |
|
| rug | 61.87 | 73.64 | |
|
| field | 29.81 | 47.44 | |
|
| armchair | 46.69 | 64.08 | |
|
| seat | 62.14 | 82.15 | |
|
| fence | 47.03 | 64.8 | |
|
| desk | 53.19 | 70.23 | |
|
| rock | 46.6 | 70.86 | |
|
| wardrobe | 46.65 | 66.04 | |
|
| lamp | 66.87 | 78.03 | |
|
| bathtub | 83.11 | 86.64 | |
|
| railing | 35.37 | 49.1 | |
|
| cushion | 60.08 | 72.91 | |
|
| base | 28.85 | 42.24 | |
|
| box | 26.91 | 33.36 | |
|
| column | 46.47 | 58.22 | |
|
| signboard | 38.24 | 51.08 | |
|
| chest of drawers | 45.6 | 66.14 | |
|
| counter | 25.59 | 34.04 | |
|
| sand | 45.36 | 64.69 | |
|
| sink | 73.4 | 81.15 | |
|
| skyscraper | 49.52 | 60.23 | |
|
| fireplace | 80.08 | 90.52 | |
|
| refrigerator | 76.78 | 81.87 | |
|
| grandstand | 46.64 | 79.47 | |
|
| path | 25.75 | 36.79 | |
|
| stairs | 34.91 | 44.92 | |
|
| runway | 70.95 | 92.5 | |
|
| case | 61.74 | 76.13 | |
|
| pool table | 91.83 | 96.65 | |
|
| pillow | 60.23 | 71.02 | |
|
| screen door | 70.03 | 75.59 | |
|
| stairway | 34.92 | 41.71 | |
|
| river | 9.03 | 17.44 | |
|
| bridge | 67.13 | 78.16 | |
|
| bookcase | 44.09 | 68.9 | |
|
| blind | 46.02 | 50.39 | |
|
| coffee table | 59.14 | 82.97 | |
|
| toilet | 85.59 | 90.78 | |
|
| flower | 37.12 | 51.46 | |
|
| book | 46.03 | 62.65 | |
|
| hill | 12.8 | 20.47 | |
|
| bench | 40.19 | 46.67 | |
|
| countertop | 56.79 | 74.35 | |
|
| stove | 78.19 | 85.06 | |
|
| palm | 51.92 | 70.76 | |
|
| kitchen island | 49.25 | 77.56 | |
|
| computer | 76.69 | 89.25 | |
|
| swivel chair | 46.97 | 64.54 | |
|
| boat | 39.55 | 56.75 | |
|
| bar | 40.71 | 53.86 | |
|
| arcade machine | 85.72 | 94.08 | |
|
| hovel | 33.09 | 39.0 | |
|
| bus | 93.28 | 97.04 | |
|
| towel | 66.95 | 78.09 | |
|
| light | 57.36 | 64.37 | |
|
| truck | 43.92 | 56.1 | |
|
| tower | 17.34 | 27.06 | |
|
| chandelier | 70.27 | 85.27 | |
|
| awning | 25.15 | 30.83 | |
|
| streetlight | 27.76 | 33.84 | |
|
| booth | 34.47 | 38.09 | |
|
| television receiver | 70.57 | 77.57 | |
|
| airplane | 60.13 | 67.32 | |
|
| dirt track | 1.29 | 2.65 | |
|
| apparel | 30.46 | 48.93 | |
|
| pole | 22.16 | 29.32 | |
|
| land | 2.43 | 3.38 | |
|
| bannister | 12.98 | 17.41 | |
|
| escalator | 35.52 | 51.31 | |
|
| ottoman | 49.75 | 64.2 | |
|
| bottle | 36.52 | 57.03 | |
|
| buffet | 45.18 | 59.91 | |
|
| poster | 26.96 | 30.14 | |
|
| stage | 15.07 | 19.98 | |
|
| van | 40.79 | 58.46 | |
|
| ship | 58.61 | 93.2 | |
|
| fountain | 37.13 | 37.62 | |
|
| conveyer belt | 73.14 | 91.11 | |
|
| canopy | 16.41 | 21.48 | |
|
| washer | 70.64 | 72.56 | |
|
| plaything | 26.95 | 40.15 | |
|
| swimming pool | 46.85 | 49.67 | |
|
| stool | 43.95 | 55.94 | |
|
| barrel | 43.46 | 68.28 | |
|
| basket | 28.25 | 40.89 | |
|
| waterfall | 52.45 | 64.56 | |
|
| tent | 88.84 | 98.38 | |
|
| bag | 16.38 | 20.77 | |
|
| minibike | 74.94 | 87.17 | |
|
| cradle | 76.09 | 97.44 | |
|
| oven | 56.13 | 67.6 | |
|
| ball | 48.07 | 61.55 | |
|
| food | 47.43 | 54.79 | |
|
| step | 11.71 | 13.34 | |
|
| tank | 49.12 | 52.75 | |
|
| trade name | 25.88 | 29.71 | |
|
| microwave | 85.51 | 93.72 | |
|
| pot | 45.76 | 52.34 | |
|
| animal | 55.15 | 57.0 | |
|
| bicycle | 57.35 | 80.39 | |
|
| lake | 47.5 | 63.73 | |
|
| dishwasher | 70.78 | 80.28 | |
|
| screen | 66.71 | 81.93 | |
|
| blanket | 11.9 | 13.84 | |
|
| sculpture | 64.88 | 77.88 | |
|
| hood | 58.27 | 69.63 | |
|
| sconce | 49.96 | 61.09 | |
|
| vase | 44.7 | 55.6 | |
|
| traffic light | 37.16 | 53.95 | |
|
| tray | 7.6 | 10.69 | |
|
| ashcan | 42.42 | 56.09 | |
|
| fan | 62.16 | 76.81 | |
|
| pier | 47.99 | 56.02 | |
|
| crt screen | 6.95 | 19.0 | |
|
| plate | 53.63 | 67.7 | |
|
| monitor | 4.75 | 5.08 | |
|
| bulletin board | 54.16 | 62.52 | |
|
| shower | 0.0 | 0.0 | |
|
| radiator | 62.46 | 71.64 | |
|
| glass | 13.45 | 14.01 | |
|
| clock | 40.9 | 46.31 | |
|
| flag | 50.72 | 53.6 | |
|
+---------------------+-------+-------+ |
|
2024/01/18 14:38:02 - mmengine - INFO - Iter(test) [500/500] aAcc: 83.8800 mIoU: 50.7800 mAcc: 62.2700 data_time: 0.0226 time: 6.5675 |
|
|