--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-lv60 tags: - automatic-speech-recognition - librispeech_asr - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: wav2vec2-librispeech-demo results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: LIBRISPEECH_ASR - CLEAN type: librispeech_asr config: clean split: test args: 'Config: clean, Training split: test, Eval split: test' metrics: - name: Wer type: wer value: 1.0225474683544304 --- # wav2vec2-librispeech-demo This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set: - Loss: 0.0030 - Wer: 1.0225 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 15.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | No log | 0.6329 | 100 | 3.9409 | 1.0 | | No log | 1.2658 | 200 | 3.0441 | 1.0 | | No log | 1.8987 | 300 | 2.9165 | 1.0 | | No log | 2.5316 | 400 | 1.4925 | 1.9968 | | 3.7012 | 3.1646 | 500 | 0.3010 | 1.9446 | | 3.7012 | 3.7975 | 600 | 0.1713 | 1.8259 | | 3.7012 | 4.4304 | 700 | 0.0990 | 1.6163 | | 3.7012 | 5.0633 | 800 | 0.0692 | 1.5439 | | 3.7012 | 5.6962 | 900 | 0.0463 | 1.4233 | | 0.1686 | 6.3291 | 1000 | 0.0389 | 1.3469 | | 0.1686 | 6.9620 | 1100 | 0.0290 | 1.3101 | | 0.1686 | 7.5949 | 1200 | 0.0204 | 1.1994 | | 0.1686 | 8.2278 | 1300 | 0.0161 | 1.1839 | | 0.1686 | 8.8608 | 1400 | 0.0143 | 1.1499 | | 0.0553 | 9.4937 | 1500 | 0.0110 | 1.1460 | | 0.0553 | 10.1266 | 1600 | 0.0082 | 1.0953 | | 0.0553 | 10.7595 | 1700 | 0.0088 | 1.1119 | | 0.0553 | 11.3924 | 1800 | 0.0059 | 1.0574 | | 0.0553 | 12.0253 | 1900 | 0.0054 | 1.0510 | | 0.0295 | 12.6582 | 2000 | 0.0042 | 1.0356 | | 0.0295 | 13.2911 | 2100 | 0.0039 | 1.0360 | | 0.0295 | 13.9241 | 2200 | 0.0033 | 1.0269 | | 0.0295 | 14.5570 | 2300 | 0.0031 | 1.0237 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.5.1 - Datasets 2.21.0 - Tokenizers 0.19.1